Abstract

Dental interfaces are subject to mixed-mode loading. This study provides practical guidance for determining interfacial fracture toughness of dental ceramic systems. We address interfacial fracture of a composite resin cement sandwiched between two dental ceramic materials. Emphasis is placed on sandwich disc specimens with cracks originating from elliptical-shaped flaws near the center, for which analytical fracture mechanics methods fail to predict. The interaction integral method is used to provide accurate finite element solutions for cracks with elliptical-shaped flaws in a Brazil-nut-sandwich specimen. The developed model was first validated with existing experimental data and then used to evaluate the three most widely used dental ceramic systems: polycrystalline ceramics (zirconia), glass-ceramics (lithium disilicate), and feldspathic ceramics (porcelain). Contrary to disc specimens with ideal cracks, those with cracks emanating from elliptical-shaped flaws do not exhibit a monotonic increase in interfacial toughness. Also, interfacial fracture toughness is seen to have a direct relationship with the aspect ratio of elliptical-shaped flaws and an inverse relationship with the modulus ratio of the constituents. The presence of an elliptical-shaped flaw significantly changes the interfacial fracture behavior of sandwich structures. Semi-empirical design equations are provided for fracture toughness and stress intensity factors for interfacial cracks. The developed design equations provide practical guidance for determining interfacial fracture toughness of selected dental ceramic material systems. Those equations take into account four critical factors: size of the elliptical flaw, modulus ratio of constituent materials, loading angle, and applied load.

References

1.
Zhang
,
Y.
,
Sailer
,
I.
, and
Lawn
,
B. R.
,
2013
, “
Fatigue of Dental Ceramics
,”
J. Dent.
,
41
(
12
), pp.
1135
1147
.
2.
Homaei
,
E.
,
Farhangdoost
,
K.
, and
Akbari
,
M.
,
2016
, “
An Investigation Into Finding the Optimum Combination for Dental Restorations
,”
J. Comput. Appl. Res. Mech. Eng.
,
6
(
1
), pp.
1
9
.
3.
Zhang
,
Y.
, and
Lawn
,
B. R.
,
2018
, “
Novel Zirconia Materials in Dentistry
,”
J. Dent. Res.
,
97
(
2
), pp.
140
147
.
4.
Homaei
,
E.
,
Jin
,
X. Z.
,
Pow
,
E. H.
,
Matinlinna
,
J. P.
,
Tsoi
,
J. K.
, and
Farhangdoost
,
K.
,
2018
, “
Numerical Fatigue Analysis of Premolars Restored by CAD/CAM Ceramic Crowns
,”
Dent. Mater.
,
34
(
7
), pp.
149
157
.
5.
Maghami
,
E.
,
Homaei
,
E.
,
Farhangdoost
,
K.
,
Pow
,
E. H.
,
Matinlinna
,
J. P.
, and
Tsoi
,
J. K.
,
2018
, “
Effect of Preparation Design for All-Ceramic Restoration on Maxillary Premolar: A 3D Finite Element Study
,”
J. Prosthodont. Res.
,
62
(
4
), pp.
436
442
.
6.
Schmalz
,
G.
, and
Arenholt-Bindslev
,
D.
,
2009
,
Biocompatibility of Dental Materials
,
Springer
,
Berlin
.
7.
Burke
,
F. J.
, and
Watts
,
D. C.
,
1994
, “
Fracture Resistance of Teeth Restored With Dentin-Bonded Crowns
,”
Quintessence Int.
,
25
(
5
), pp.
335
340
.
8.
Rahbar
,
N.
,
Yang
,
Y.
, and
Soboyejo
,
W.
,
2008
, “
Mixed Mode Fracture of Dental Interfaces
,”
Mater. Sci. Eng.
488
(
1–2
), pp.
381
388
.
9.
Mankour
,
A.
,
Bouiadjra
,
B. B.
, and
Belhouari
,
M.
,
2008
, “
Brazilian Disk Simulation Intended for the Study of Interfacial Cracks in Bi-Materials
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
696
699
.
10.
Burke
,
F. J.
,
Fleming
,
G. J.
,
Nathanson
,
D.
, and
Marquis
,
P. M.
,
2002
, “
Are Adhesive Technologies Needed to Support Ceramics? An Assessment of the Current Evidence
,”
J. Adhes. Dent.
,
4
(
1
), pp.
7
22
.
11.
Valenti
,
M.
, and
Valenti
,
A.
,
2009
, “
Retrospective Survival Analysis of 261 Lithium Disilicate Crowns in a Private General Practice
,”
Quintessence Int.
,
40
(
7
), pp.
573
579
.
12.
Özcan
,
M.
, and
Bernasconi
,
M.
,
2015
, “
Adhesion to Zirconia Used for Dental Restorations: a Systematic Review and Meta-Analysis
,”
J. Adhes. Dent.
,
17
(
1
), pp.
7
26
.
13.
Banks-Sills
,
L.
, and
Schwartz
,
J.
,
2002
, “
Fracture Testing of Brazilian Disk Sandwich Specimens
,”
Int. J. Fract.
,
118
(
3
), pp.
191
209
.
14.
Shahrbaf
,
S.
,
van Noort
,
R.
,
Mirzakouchaki
,
B.
,
Ghassemieh
,
E.
, and
Martin
,
N.
,
2013
, “
Effect of the Crown Design and Interface Lute Parameters on the Stress-State of a Machined Crown–Tooth System: A Finite Element Analysis
,”
Dent. Mater.
,
29
(
8
), pp.
e123
e131
.
15.
Melo
,
R. M.
,
Rahbar
,
N.
, and
Soboyejo
,
W.
,
2011
, “
Interfacial Fracture of Dentin Adhesively Bonded to Quartz-Fiber Reinforced Composite
,”
Mater. Sci. Eng.
,
31
(
4
), pp.
770
774
.
16.
Ramos
,
N. C.
,
Kaizer
,
M. R.
,
Campos
,
T. M. B.
,
Kim
,
J.
,
Zhang
,
Y.
, and
Melo
,
R. M.
,
2019
, “
Silica-Based Infiltrations for Enhanced Zirconia-Resin Interface Toughness
,”
J. Dent. Res.
,
98
(
4
), pp.
423
429
.
17.
Sano
,
H.
,
Shono
,
T.
,
Sonoda
,
H.
,
Takatsu
,
T.
,
Ciucchi
,
B.
,
Carvalho
,
R.
, and
Pashley
,
D. H.
,
1994
, “
Relationship Between Surface Area for Adhesion and Tensile Bond Strength—Evaluation of a Micro-Tensile Bond Test
,”
Dent. Mater.
,
10
(
4
), pp.
236
240
.
18.
Della Bona
,
A.
, and
Van Noort
,
R.
,
1995
, “
Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic
,”
J. Dent. Res.
,
74
(
9
), pp.
1591
1596
.
19.
Guess
,
P. C.
,
Kuliš
,
A.
,
Witkowski
,
S.
,
Wolkewitz
,
M.
,
Zhang
,
Y.
, and
Strub
,
J. R.
,
2008
, “
Shear Bond Strengths Between Different Zirconia Cores and Veneering Ceramics and Their Susceptibility to Thermocycling
,”
Dent. Mater.
,
24
(
4
), pp.
1556
1567
.
20.
Chai
,
H.
,
Kaizer
,
M.
,
Chughtai
,
A.
,
Tong
,
H.
,
Tanaka
,
C.
, and
Zhang
,
Y.
,
2015
, “
On the Interfacial Fracture Resistance of Resin-Bonded Zirconia and Glass-Infiltrated Graded Zirconia
,”
Dent. Mater.
,
31
(
11
), pp.
1304
1311
.
21.
Mesmar
,
S.
, and
Ruse
,
N. D.
,
2017
, “
Interfacial Fracture Toughness of Adhesive Resin Cement-Lithium-Disilicate/Resin-Composite Blocks
,”
J. Prosthodontics
,
28
(
1
), pp.
e243
e251
.
22.
Tong
,
J.
,
Wong
,
K. Y.
, and
Lupton
,
C.
,
2007
, “
Determination of Interfacial Fracture Toughness of Bone–Cement Interface Using Sandwich Brazilian Disks
,”
Eng. Fract. Mech.
,
74
(
12
), pp.
904
1916
.
23.
Atkinson
,
C.
,
Smelser
,
R. E.
, and
Sanchez
,
J.
,
1982
, “
Combined Mode Fracture via the Cracked Brazilian Disk Test
,”
Int. J. Fract.
,
18
(
4
), pp.
279
291
.
24.
Soares
,
J. B.
, and
Tang
,
T.
,
1998
, “
Bimaterial Brazilian Specimen for Determining Interfacial Fracture Toughness
,”
Eng. Fract. Mech.
59
(
1
), pp.
57
71
.
25.
Wang
,
J. S.
, and
Suo
,
Z.
,
1990
, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta Metall. Mater.
38
(
7
), pp.
1279
1290
.
26.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “Mixed Mode Cracking in Layered Materials,”
Advances in Applied Mechanics
,
29
,
J. W.
Hutchinson
, and
T. Y.
Wu
, ed.,
Academic Press, Inc
,
Boston
, pp.
63
191
.
27.
Zhang
,
Y.
, and
Kelly
,
J. R.
,
2017
, “
Dental Ceramics for Restoration and Metal Veneering
,”
Dent. Clin.
,
61
(
4
), pp.
797
819
.
28.
Wang
,
C. H.
,
1997
, “
Fracture of Interface Cracks Under Combined Loading
,”
Eng. Fract. Mech.
,
56
(
1
), pp.
77
86
.
29.
O’Dowd
,
N. P.
,
Shih
,
C. F.
, and
Stout
,
M. G.
,
1992
, “
Test Geometries for Measuring Interfacial Fracture Toughness
,”
Int. J. Solids Struct.
,
29
(
5
), pp.
571
589
.
30.
Agrawal
,
A.
, and
Karlsson
,
A. M.
,
2006
, “
Obtaining Mode Mixity for a Bimaterial Interface Crack Using the Virtual Crack Closure Technique
,”
Int. J. Fract.
141
(
1–2
), pp.
75
98
.
31.
Rice
,
J.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
32.
Fiala
,
Z.
, and
Zemánková
,
J.
,
1997
, “
Problems in Determination of Interfacial Fracture Toughness by Brazil nut Specimen
,”
Proceedings of the Euromech Colloquium
,
Saint-Étienne, France
,
May 13–15
, pp.
93
104
.
33.
Wang
,
J. S.
,
1995
, “
Interfacial Fracture Toughness of a Copper/Alumina System and the Effect of the Loading Phase Angle
,”
Mech. Mater.
,
20
(
3
), pp.
251
259
.
34.
Belhouari
,
M.
,
Amiri
,
A.
,
Mehidi
,
A.
,
Madani
,
K.
, and
Bachir Bouiadjra
,
B.
,
2014
, “
Elastic–Plastic Analysis of Interaction Between an Interface and Crack in Bi-Materials
,”
Int. J. Damage Mech.
,
23
(
3
), pp.
299
326
.
35.
Agrawal
,
A.
, and
Karlsson
,
A. M.
,
2007
, “
On the Reference Length and Mode Mixity for a Bi-Material Interface
,”
ASME J. Eng. Mater. Technol.
,
129
(
4
), pp.
580
587
.
36.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
C.
,
2008
, “
Evaluation of the Stress Intensity Factors for Cracks in Continuously Nonhomogeneous Solids, Part I: Interaction Integral
,”
Mech. Adv. Mater. Struct.
,
15
(
6
), pp.
438
443
.
37.
Ru
,
Z. L.
,
Zhao
,
H. B.
, and
Shun-de
,
Y.
,
2013
, “
Evaluation of Mixed-Mode Stress Intensity Factors by Extended Finite Element Method
,”
J. Cent. South Univ.
,
20
(
5
), pp.
1420
1425
.
38.
Yu
,
H.
,
Wu
,
L.
,
Guo
,
L.
,
He
,
Q.
, and
Du
,
S.
,
2010
, “
Interaction Integral Method for the Interfacial Fracture Problems of Two Nonhomogeneous Materials
,”
Mech. Mater.
,
42
(
4
), pp.
435
450
.
39.
Smelser
,
R. E.
, and
Gurtin
,
M. E.
,
1977
, “
On the J-Integral of Bi-Material Bodies
,”
Int. J. Fract.
,
13
, pp.
382
384
.
40.
Sukumar
,
N.
,
Huang
,
Z. Y.
,
Prévost
,
J. H.
, and
Suo
,
Z.
,
2004
, “
Partition of Unity Enrichment for Bimaterial Interface Cracks
,”
Int. J. Numer. Methods Eng.
,
59
(
8
), pp.
1075
1102
.
41.
Pant
,
M.
,
Singh
,
I. V.
, and
Mishra
,
B. K.
,
2011
, “
Evaluation of Mixed Mode Stress Intensity Factors for Interface Cracks Using EFGM
,”
Appl. Math. Model.
,
35
(
7
), pp.
3443
3459
.
42.
Pathak
,
H.
,
Singh
,
A.
, and
Singh
,
I. V.
,
2012
, “
Numerical Simulation of Bi-Material Interfacial Cracks Using EFGM and XFEM
,”
Int. J. Mech. Mater Des.
,
8
(
1
), pp.
9
36
.
43.
Song
,
S. H.
, and
Paulino
,
G. H.
,
2006
, “
Dynamic Stress Intensity Factors for Homogeneous and Smoothly Heterogeneous Materials Using the Interaction Integral Method
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4830
4866
.
44.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
299
316
.
45.
Kumar
,
S.
,
Singh
,
I. V.
,
Mishra
,
B. K.
, and
Singh
,
A.
,
2016
, “
New Enrichments in XFEM to Model Dynamic Crack Response of 2-D Elastic Solids
,”
Int. J. Impact Eng.
,
87
, pp.
198
211
.
46.
Nakamura
,
T.
,
1991
, “
Three-Dimensional Stress Fields of Elastic Interface Cracks
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
939
946
.
47.
Chadaram
,
S.
, and
Yadav
,
S. K.
,
2020
, “
A XFEM Approach for the Three-Dimensional Cracks in Piezoelectric Material Using Interaction Integral
,”
Eng. Fract. Mech.
,
239
, p.
107322
.
48.
Huang
,
K.
,
Guo
,
L.
, and
Yu
,
H.
,
2018
, “
Investigation on Mixed-Mode Dynamic Stress Intensity Factors of an Interface Crack in Bi-Materials With an Inclusion
,”
Compos. Struct.
,
202
, pp.
491
499
.
49.
Nahta
,
R.
, and
Moran
,
B.
,
1993
, “
Domain Integrals for Axisymmetric Interface Crack Problems
,”
Int. J. Solids Struct.
,
30
(
15
), pp.
2027
2040
.
50.
Carneiro
,
F. L. L. B.
,
1943
, “
A New Method to Determine the Tensile Strength of Concrete
,”
Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules
,
Sao Paulo, Brazil
,
Sept. 16
, vol.
3
, pp.
126
129
.
51.
Bois-Grossiant
,
P.
, and
Tan
,
C. L.
,
1995
, “
Boundary Element Fracture Mechanics Analysis of Brazil-Nut Sandwich Specimens With an Interface Crack
,”
Eng. Anal. Bound. Elem.
16
(
3
), pp.
215
225
.
52.
An
,
B.
, and
Zhang
,
D.
,
2018
, “
An Analysis of Crack Growth in Dentin at the Microstructural Scale
,”
J. Mech. Behav. Biomed. Mater.
,
81
, pp.
149
160
.
53.
Maghami
,
E.
,
Pejman
,
R.
, and
Najafi
,
A. R.
,
2021
, “
Fracture Micromechanics of Human Dentin: A Microscale Numerical Model
,”
J. Mech. Behav. Biomed. Mater.
,
114
, p.
104171
.
54.
Barsoum
,
R. S.
,
1997
, “
Triangular Quarter-Point Elements as Elastic and Perfectly Plastic Crack-Tip Elements
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
85
98
.
55.
Russell
,
D. M.
,
1997
, “
Error Measures for Comparing Transient Data: Part I: Development of a Comprehensive Error Measure
,”
Proceedings of the 68th Shock and Vibration Symposium
,
Hunt Valley, MD
,
Nov. 3–6
, pp.
175
184
.
56.
LeBlanc
,
J.
, and
Shukla
,
A.
,
2010
, “
Dynamic Response and Damage Evolution in Composite Materials Subjected to Underwater Explosive Loading: An Experimental and Computational Study
,”
Compos. Struct.
,
92
(
10
), pp.
2421
2430
.
You do not currently have access to this content.