Engineering polymers generally exhibit asymmetric yield strength in tension and compression due to different arrangements of molecular structures in response to external loadings. For the polymeric materials whose plastic behavior follows the Drucker–Prager yield criterion, the present study proposes a new method to predict both tensile and compressive yield strength utilizing instrumented spherical indentation. Our method is decomposed into two parts based on the depth of indentation, shallow indentation, and deep indentation. The shallow indentation is targeted to study elastic deformation of materials, and is used to estimate Young's modulus and yield strength in compression; the deep indentation is used to achieve full plastic deformation of materials and extract the parameters in Drucker–Prager yield criterion associated with both tensile and compressive yield strength. Extensive numerical computations via finite element method (FEM) are performed to build a dimensionless function that can be employed to describe the quantitative relationship between indentation force-depth curves and material parameters of relevance to yield criterion. A reverse algorithm is developed to determine the material properties and its robustness is verified by performing both numerical and experimental analysis.

References

1.
Roesler
,
J.
,
Harders
,
H.
, and
Baeker
,
M.
,
2007
,
Mechanical Behavior of Engineering Materials. Metals, Ceramics, Polymers, and Composites
,
Springer
,
Berlin
.
2.
Bower
,
D. I.
,
2002
,
An Introduction to Polymer Physics
,
Cambridge University Press
,
New York
.
3.
Ward
,
I. M.
, and
Sweeney
,
J.
,
2013
,
Mechanical Properties of Solid Polymers
, 3rd ed.,
Wiley
,
Chichester, UK
.
4.
Raghava
,
R.
, and
Caddell
,
R. M.
,
1973
, “
The Macroscopic Yield Behavior of Polymers
,”
J. Mater. Sci.
,
8
(2), pp.
225
232
.
5.
Donato
,
G. H. B.
, and
Bianchi
,
M.
,
2012
, “
Pressure Dependent Yield Criteria Applied for Improving Design Practices and Integrity Assessments Against Yielding of Engineering Polymers
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
2
7
.
6.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(01), pp.
3
20
.
7.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic- Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(06), pp.
1564
1583
.
8.
Dao
,
M.
,
Chollacoop
,
N.
,
VanVliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.
9.
Chantikul
,
P.
,
Anstis
,
G. R.
,
Lawn
,
B. R.
, and
Marshall
,
D. B.
,
1981
, “
A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness—II: Strength Method
,”
J. Am. Ceram. Soc.
,
64
(
9
), pp.
539
543
.
10.
Samadi-Dooki
,
A.
,
Malekmotiei
,
L.
, and
Voyiadjis
,
G. Z.
,
2016
, “
Characterizing Shear Transformation Zones in Polycarbonate Using Nanoindentation
,”
Polymer
,
82
, pp.
238
245
.
11.
Xu
,
B.
,
Yonezu
,
A.
,
Yue
,
Z. F.
, and
Chen
,
X.
,
2009
, “
Indentation Creep Surface Morphology of Nickel-Based Single Crystal Superalloys
,”
Comput. Mater. Sci.
,
46
(
2
), pp.
275
285
.
12.
Xu
,
B.
,
Yue
,
Z.
, and
Wang
,
J.
,
2007
, “
Indentation Fatigue Behavior of Polycrystalline Copper
,”
Mech. Mater.
,
39
(
12
), pp.
1066
1080
.
13.
Xu
,
B.
,
Yue
,
Z.
, and
Chen
,
X.
,
2009
, “
An Indentation Fatigue Depth Propagation Law
,”
Scr. Mater.
,
60
(
10
), pp.
854
857
.
14.
Xu
,
B. X.
,
Yonezu
,
A.
, and
Chen
,
X.
,
2010
, “
An Indentation Fatigue Strength Law
,”
Philos. Mag. Lett.
,
90
(
5
), pp.
313
322
.
15.
Toyama
,
H.
,
Niwa
,
M.
,
Xu
,
J.
, and
Yonezu
,
A.
,
2015
, “
Failure Assessment of a Hard Brittle Coating on a Ductile Substrate Subjected to Cyclic Contact Loading
,”
Eng. Failure Anal.
,
57
, pp.
118
128
.
16.
Drucker
,
D. C.
,
1973
, “
Plasticity Theory, Strength-Differential (SD) Phenomenon, and Volume Expansion in Metals and Plastics
,”
Metall. Trans.
,
4
(
3
), pp.
667
673
.
17.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis of Limit Design
,”
Appl. Math.
,
8
, pp.
157
162
.
18.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
,
2008
, “
Determination of the Effective Elastic-Plasticresponse of Metal-Ceramic Composites
,”
Int. J. Plast.
,
24
(
3
), pp.
483
508
.
19.
Bowden
,
P. B.
, and
Jukes
,
J. A.
,
1972
, “
The Plastic Flow of Polymers
,”
J. Mater. Sci.
,
7
, pp.
52
63
.
20.
Quinson
,
R.
,
Perez
,
J.
,
Rink
,
M.
, and
Pavan
,
A.
,
1997
, “
Yield Criteria for Amorphous Glassy Polymers
,”
J. Mater. Sci.
,
32
(
5
), pp.
1371
1379
.
21.
Voyiadjis
,
Z. G.
, and
Taqieddin
,
Z. N.
,
2009
, “
Elastic Plastic and Damage Model for Concrete Materials—Part I: Theoretical Formulation
,”
Int. J. Struct. Changes Solids – Mech. Appl.
,
1
(
1
), pp.
31
59
.
22.
Giannakopoulos
,
A. E.
, and
Larsson
,
P. L.
,
1997
, “
Analysis of Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics
,”
Mech. Mater.
,
25
(1), pp.
1
35
.
23.
Vaidyanathan
,
R.
,
Dao
,
M.
,
Ravichandran
,
G.
, and
Suresh
,
S.
,
2001
, “
Study of Mechanical Deformation in Bulk Metallic Glass Through Instrumented Indentation
,”
Acta Mater.
,
49
(
18
), pp.
3781
3789
.
24.
Fornell
,
J.
,
Concustell
,
A.
,
Surinach
,
S.
,
Li
,
W. H.
,
Cuadrado
,
N.
,
Gebert
,
A.
,
Baró
,
M. D.
, and
Sorte
,
J.
,
2009
, “
Yielding and Intrinsic Plasticity of TiZrNiCuBe Bulk Metallic Glass
,”
Int. J. Plast.
,
25
(
8
), pp.
1540
1549
.
25.
Briscoe
,
B. J.
,
Flori
,
L.
, and
Pelillo
,
E.
,
1998
, “
Nanoindentation of Polymeric Surfaces
,”
J. Phys. D
,
31
(
19
), pp.
2395
2405
.
26.
Briscoe
,
B. J.
, and
Sebastian
,
K. S.
,
1996
, “
The Elastoplastic Response of Poly(Methylmetha-Crylate) to Indentation
,”
Proc. R. Soc. London A
,
452
(
1946
), pp.
439
457
.
27.
Seltzer
,
R.
,
Adrian Cisilino
,
P.
,
Patricia Frontini
,
M.
, and
Mai
,
Y.-W.
,
2011
, “
Determination of the Drucker–Prager Parameters of Polymers Exhibiting Pressure-Sensitive Plastic Behavior by Depth-Sensing Indentation
,”
Int. J. Mech. Sci.
,
53
(
6
), pp.
471
478
.
28.
Bucaille
,
J. L.
,
Felder
,
E.
, and
Hochstetter
,
G.
,
2002
, “
Identification of the Viscoplastic Behavior of a Polycarbonate Based on Experiments and Numerical Modeling of the Nano-Indentation Test
,”
J. Mater. Sci.
,
37
(
18
), pp.
3999
4011
.
29.
Kermouche
,
G.
,
Loubet
,
J. L.
, and
Bergheau
,
J. M.
,
2008
, “
Extraction of Stress–Strain Curves of Elastic–Viscoplastic Solids Using Conical/Pyramidal Indentation Testing With Application to Polymers
,”
Mech. Mater.
,
40
(4–5), pp.
271
283
.
30.
Kwon
,
H. J.
,
Jar
,
P.-Y. B.
, and
Xia
,
Z.
,
2004
, “
Residual Toughness of Poly (Acrylonitrile-Butadiene-Styrene) (ABS) After Fatigue Loading-Effect of Uniaxial Fatigue Loading
,”
J. Mater. Sci.
,
39
(
15
), pp.
4821
4828
.
31.
Inoue
,
N.
,
Yonezu
,
A.
,
Watanabe
,
Y.
,
Okamura
,
T.
,
Yondea
,
K.
, and
Xu
,
B.
,
2015
, “
Prediction of Viscoplastic Properties of Polymeric Materials Using Sharp Indentation
,”
Comput. Mater. Sci.
,
110
, pp.
321
330
.
32.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
33.
Hirakata
,
H.
,
Ogiwara
,
H.
,
Yonezu
,
A.
, and
Minoshima
,
K.
,
2010
, “
Evaluation of Incipient Plasticity From Interfaces Between Ultra-Thin Gold Films and Compliant Substrates
,”
Thin Solid Films
,
518
(
18
), pp.
5249
5256
.
34.
Marc
,
2011
, “
Theory and User's Manual A 2011
,”
MSC Software
,
Santa Ana, CA
.
35.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Scaling Approach to Conical Indentation in Elastic-Plastic Solids With Work Hardening
,”
J. Appl. Phys.
,
84
(
3
), pp.
1284
1291
.
36.
Cheng
,
Y. T.
,
Cheng
,
C.
, and
Scaling
,
M.
,
2004
, “
Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng.
,
R44
(
4–5
), pp.
91
149
.
37.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids.
,
55
(
8
), pp.
1618
1660
.
38.
Yonezu
,
A.
,
Kusano
,
R.
, and
Chen
,
X.
,
2013
, “
On the Mechanism of Intergranular Stress Corrosion Cracking of Sensitized Stainless Steel in Tetrathionate Solution
,”
J. Mater. Sci.
,
48
(
6
), pp.
2447
2453
.
39.
Yonezu
,
A.
,
Yoneda
,
K.
,
Hirakata
,
H.
,
Sakihara
,
M.
, and
Minoshima
,
K.
,
2010
, “
A Simple Method to Evaluate Anisotropic Plastic Properties Based on Dimensionless Function of Single Spherical Indentation—Application to SiC Whisker Reinforced Aluminum Alloy
,”
Mater. Sci. Eng. A
,
527
(29–30), pp.
7646
7657
.
40.
Le
,
M.-Q.
,
2009
, “
Material Characterization by Dual Sharp Indenters
,”
Int. J. Solids Struct.
,
46
(
16
), pp.
2988
2998
.
41.
Cao
,
Y. P.
, and
Lu
,
J.
,
2004
, “
Depth-Sensing Instrumented Indentation With Dual Sharp Indenters: Stability Analysis and Corresponding Regularization Schemes
,”
Acta Mater.
,
52
(
5
), pp.
1143
1153
.
42.
Xu
,
B.
, and
Chen
,
X.
,
2010
, “
Determining Engineering Stress–Strain Curve Directly From the Load–Depth Curve of Spherical Indentation Test
,”
J. Mater. Res.
,
25
(
12
), pp.
2297
2307
.
43.
Phadikar
,
J. K.
,
Bogetti
,
T. A.
, and
Karlsson
,
A. M.
,
2013
, “
On the Uniqueness and Sensitivity of Indentation Testing of Isotropic Materials
,”
Int. J. Solids Struct.
,
50
(20–21), pp.
3242
3253
.
44.
Phadikar
,
J. K.
,
Bogetti
,
T. A.
, and
Karlsson
,
A. M.
,
2014
, “
Aspects of Experimental Errors and Data Reduction Schemes From Spherical Indentation of Isotropic Materials
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
031005
.
45.
Zhao
,
M.
,
Chen
,
X.
,
Yan
,
J.
, and
Karlsson
,
A. M.
,
2006
, “
Determination of Uniaxial Residual Stress and Mechanical Properties by Instrumented Indentation
,”
Acta Mater.
,
54
(
10
), pp.
2823
2832
.
You do not currently have access to this content.