A crystal-plasticity-based damage model that incorporates material length-scale through use of the slip-plane lattice incompatibility is developed with attention to the physical basis for the evolution of damage in a “bulk” shear deformation and without resort to ad hoc measures of shear deformation. To incorporate the physics of the shear damage process recently found by Kweon et al. (2010, “Experimental Characterization of Damage Processes in Aluminum AA2024-O,” ASME J. Eng. Mater. Technol., 132(3), p. 031008), the development of tensile hydrostatic stress in grains due to grain-to-grain interaction, two existing theories, crystal plasticity, and the void growth equation by Cocks and Ashby (1982, “On Creep Fracture by Void Growth,” Prog. Mater. Sci., 27(3–4), pp. 189–244) is combined to make the model in this study. The effect of the void volume increase onto the constitutive behavior is incorporated by adding the deformation gradient due to the void volume growth into a multiplicatively decomposed kinematics map. Simulations with the proposed model reveal the physics of shear and reproduce the accelerated damage in the shear deformation in lab experiments and industrial processes: the gradient of hydrostatic stress along with the development of macroscopic normal stress (hydrostatic stress) components amplifies the development of the local hydrostatic stress in grains under tensile hydrostatic stress.

References

1.
Benzerga
,
A. A.
, and
Besson
,
J.
,
2001
, “
Plastic Potentials for Anisotropic Porous Solids
,”
Eur. J. Mech A: Solids
,
20
(
3
), pp.
397
434
.
2.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth–I. Yield Criteria and Flow Rules for Porous Ductile Materials
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
3.
Kachanov
,
L. M.
,
1999
, “
Rupture Time Under Creep Condition
,”
Int. J. Fract.
,
97
(1), pp.
11
18
.
4.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
5.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
6.
Kweon
,
S.
,
Beaudoin
,
A. J.
, and
McDonald
,
R. J.
,
2010
, “
Experimental Characterization of Damage Processes in Aluminum AA2024-O
,”
ASME J. Eng. Mater. Technol.
,
132
(
3
), p.
031008
.
7.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
8.
McClintock
,
F. A.
,
Kaplan
,
S. M.
, and
Berg
,
C. A.
,
1966
, “
Ductile Fracture by Hole Growth in Shear Bands
,”
Int. J. Fract. Mech.
,
2
(
4
), pp.
614
627
.
9.
Lode
,
W.
,
1926
, “
Versuche über den einfluβ der mittleren hauptspannug auf die flieβgrenze
,”
Z. Angew. Math. Mech.
,
5
(
2
), pp.
142
144
.
10.
Butcher
,
C.
,
Chen
,
Z.
,
Bardelcik
,
A.
, and
Worswick
,
M.
,
2009
, “
Damage-Based Finite-Element Modeling of Tube Hydroforming
,”
Int. J. Fract.
,
155
(
1
), pp.
55
65
.
11.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A: Solids
,
27
(
1
), pp.
1
17
.
12.
Xue
,
L.
,
2007
, “
Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5163
5181
.
13.
Xue
,
L.
,
2008
, “
Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3343
3366
.
14.
Xue
,
L.
, and
Wierzbicki
,
T.
,
2008
, “
Ductile Fracture Initiation and Propagation Modeling Using Damage Plasticity Theory
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3276
3293
.
15.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1989
, “
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
355
362
.
16.
Ekh
,
M.
,
Lillbacka
,
R.
, and
Runesson
,
K.
,
2004
, “
A Model Framework for Anisotropic Damage Coupled to Crystal (Visco) Plasticity
,”
Int. J. Plast.
,
20
(
12
), pp.
2143
2159
.
17.
Clayton
,
J. D.
,
2006
, “
Continuum Multiscale Modeling of Finite Deformation Plasticity and Anisotropic Damage in Polycrystals
,”
Theor. Appl. Fract. Mech.
,
45
(
3
), pp.
163
185
.
18.
Potirniche
,
G. P.
,
Horstemeyer
,
M. F.
, and
Ling
,
X. W.
,
2007
, “
An Internal State Variable Damage Model in Crystal Plasticity
,”
Mech. Mater.
,
39
(
10
), pp.
941
952
.
19.
Boudifa
,
M.
,
Saanouni
,
K.
, and
Chaboche
,
J.-L.
,
2009
, “
A Micromechanical Model for Inelastic Ductile Damage Prediction in Polycrystalline Metals for Metal Forming
,”
Int. J. Mech. Sci.
,
51
(
6
), pp.
453
464
.
20.
Li
,
D.-F.
,
Davies
,
C. M.
,
Zhang
,
S.-Y.
,
Dickinson
,
C.
, and
O'Dowd
,
N. P.
,
2013
, “
The Effect of Prior Deformation on Subsequent Microplasticity and Damage Evolution in an Austenitic Stainless Steel at Elevated Temperature
,”
Acta Mater.
,
61
(
10
), pp.
3575
3584
.
21.
Luo
,
C.
, and
Chattopadhyay
,
A.
,
2011
, “
Prediction of Fatigue Crack Initial Stage Based on a Multiscale Damage Criterion
,”
Int. J. Fatigue
,
33
(
3
), pp.
403
413
.
22.
Naderi
,
M.
,
Amiri
,
M.
,
Iyyer
,
N.
,
Kang
,
P.
, and
Phan
,
N.
,
2015
, “
Fatigue Failure Initiation Modeling in AA7075-T651 Using Microstructure-Sensitive Continuum Damage Mechanics
,”
J. Failure Anal. Prev.
,
15
(
5
), pp.
701
710
.
23.
Aslan
,
O.
,
Cordero
,
N. M.
,
Gaubert
,
A.
, and
Forest
,
S.
,
2011
, “
Micromorphic Approach to Single Crystal Plasticity and Damage
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1311
1325
.
24.
Xu
,
X.-P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mater. Sci. Eng.
,
1
(
2
), pp.
111
132
.
25.
Clayton
,
J. D.
,
2005
, “
Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation
,”
J. Mech. Phys. Solids
,
53
(
2
), pp.
261
301
.
26.
Bieler
,
T. R.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Kumar
,
D.
,
Mason
,
D. E.
,
Crimp
,
M. A.
, and
Raabe
,
D.
,
2009
, “
The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals
,”
Int. J. Plast.
,
25
(
9
), pp.
1655
1683
.
27.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
(
6
), pp.
1331
1362
.
28.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture Part I: Experiments
,”
Acta Mater.
,
52
(
15
), pp.
4623
4638
.
29.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
,
27
(3–4), pp.
189
244
.
30.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
,
1988
, “
A Constitutive Description of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall. Mater.
,
36
(
1
), pp.
81
93
.
31.
Kok
,
S.
,
Beaudoin
,
A. J.
, and
Totorelli
,
D. A.
,
2002
, “
A Polycrystal Plasticity Model Based on the Mechanical Threshold
,”
Int. J. Plast.
,
18
(5–6), pp.
715
741
.
32.
Clayton
,
J. D.
,
2011
,
Nonlinear Mechanics of Crystals
,
Springer
,
Dordrecht, The Netherlands
.
33.
Steinmann
,
P.
,
2015
,
Geometric Foundations of Continuum Mechanics
,
Springer
,
Berlin
.
34.
Marin
,
E. B.
, and
Dawson
,
P. R.
,
1998
, “
On Modeling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
165
(1–4), pp.
1
21
.
35.
Kweon
,
S.
,
2012
, “
Damage at Negative Triaxiality
,”
Eur. J. Mech. A: Solids
,
31
(
1
), pp.
203
212
.
36.
Chen
,
S. R.
,
Kocks
,
U.
,
MacEwen
,
S.
,
Beaudoin
,
A. J.
, and
Stout
,
M. G.
,
1998
, “
Constitutive Modeling of a 5182 Aluminum as a Function of Strain Rate and Temperature
,”
Hot Deformation of Aluminum Alloys II
,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
205
216
.
37.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1565
1595
.
38.
Acharya
,
A.
,
Bassani
,
J. L.
, and
Beaudoin
,
A.
,
2003
, “
Geometrically Necessary Dislocations, Hardening, and a Simple Gradient Theory of Crystal Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
167
172
.
39.
Acharya
,
A.
, and
Beaudoin
,
A. J.
,
2000
, “
Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains
,”
J. Mech. Phys. Solids
,
48
(
10
), pp.
2213
2230
.
40.
Beaudoin
,
A. J.
,
Acharya
,
A.
,
Chen
,
S. R.
,
Korzekwa
,
D. A.
, and
Stout
,
M. G.
,
2000
, “
Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals
,”
Acta Mater.
,
48
(
13
), pp.
3409
3423
.
41.
Beaudoin
,
A. J.
, and
Acharya
,
A.
,
2001
, “
A Model for Rate-Dependent Flow of Metal Polycrystals Based on the Slip Plane Lattice Incompatibility
,”
Mater. Sci. Eng. A
,
309–310
, pp.
411
415
.
42.
Kocks
,
U. F.
,
Tomé
,
C. N.
, and
Wenk
,
H.-R.
,
1998
,
Texture and Anisotropy
,
Cambridge University Press
,
Cambridge, UK
.
43.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
(
1
), pp.
57
70
.
44.
Mackenzie
,
J.
,
1950
, “
The Elastic Constants of a Solid Containing Spherical Holes
,”
Proc. Phys. Soc., London
,
63
(
1
), pp.
2
11
.
45.
Steglich
,
D.
,
Brocks
,
W.
,
Heerens
,
J.
, and
Pardoen
,
T.
,
2008
, “
Anisotropic Ductile Fracture of Al 2024 Alloys
,”
Eng. Fract. Mech.
,
75
(
12
), pp.
3692
3706
.
46.
Merati
,
A.
,
2005
, “
A Study of Nucleation and Fatigue Behavior of an Aerospace Aluminum Alloy 2024-T3
,”
Int. J. Fatigue
,
27
(
1
), pp.
33
44
.
47.
Rodrigues
,
E. M.
,
Matias
,
A.
,
Godefroid
,
L. B.
,
Bastian
,
F. L.
, and
Al-Rubaie
,
K. S.
,
2005
, “
Fatigue Crack Growth Resistance and Crack Closure Behavior in Two Aluminum Alloys for Aeronautical Applications
,”
Mater. Res.
,
8
(
3
), pp.
287
291
.
48.
Kweon
,
S.
,
2009
, “
Edge Cracking in Rolling of an Aluminum Alloy AA2024-O
,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, IL.
49.
Kweon
,
S.
,
Beaudoin
,
A. J.
,
Kurath
,
P.
, and
Li
,
M.
,
2009
, “
Development of Localized Deformation in AA2024-O
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031009
.
50.
Kweon
,
S.
,
2013
, “
Investigation of Shear Damage Considering the Evolution of Anisotropy
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2605
2624
.
51.
Kweon
,
S.
,
2015
, “
Damage in Edge Cracking of Rolled Metal Slabs
,”
Mech. Res. Commun.
,
63
, pp.
13
20
.
You do not currently have access to this content.