The approaches traditionally used to quantify creep and creep fracture are critically assessed and reviewed in relation to a new approach proposed by Wilshire and Scharning. The characteristics, limitations, and predictive accuracies of these models are illustrated by reference to information openly available for the bainitic 1Cr–1Mo–0.25V steel. When applied to this comprehensive long-term data set, the estimated 100,000–300,000 h strength obtained from the older so called traditional methods varied considerably. Further, the isothermal predictions from these models became very unstable beyond 100,000 h. In contrast, normalizing the applied stress through an appropriate ultimate tensile strength value not only reduced the melt to melt scatter in rupture life, but also the 100,000 h strengths determined from this model for this large scale test program are predicted very accurately by extrapolation of creep life measurements lasting less than 5000 h. The approach therefore offers the potential for reducing the scale and cost of current procedures for acquisition of long-term engineering design data.

1.
ISO
, 1981, “
Methods of Extrapolation Used in Analysis of Creep Rupture Data
,” p.
6303
.
2.
Yagi
,
K.
, 2005, “
Acquisition of Long-Term Creep Data and Knowledge for New Applications
,”
Creep and Fracture in High Temperature Components-Design and Life Assessment Issues
,
I. A.
Shible
,
S. R.
Holdsworth
, and
G.
Merckling
, eds.,
DEStech
,
London
, pp.
31
45
.
3.
Bendrick
,
W.
, and
Gabrel
,
J.
, 2005, “
Assessment of Creep Rupture Strengths for the New Martensitic 9% Cr Steels E911 and T/P92
,”
Creep and Fracture in High Temperature Components-Design and Life Assessment Issues
,
I. A.
Shible
,
S. R.
Holdsworth
, and
G.
Merckling
, eds.,
DEStech
,
London
, pp.
406
418
.
4.
Kimura
,
K.
, 2005, “
Review of Allowable Stress and New Guideline of Long-Term Creep Strength Assessment for High Cr Ferritic Creep Resistant Steels
,”
Creep and Fracture in High Temperature Components-Design and Life Assessment Issues
,
I. A.
Shible
,
S. R.
Holdsworth
, and
G.
Merckling
, eds.,
DEStech
,
London
, pp.
1009
41022
.
5.
Cipolla
,
L.
, and
Gabrel
,
J.
, 2005, “
Super-High Strength Steels
,” Associazione Italia di Metallurgia, Rome, CD ROM.
6.
Wilshire
,
B.
, and
Battenbough
,
A. J.
, 2007, “
Creep and Creep Fracture of Polycrystalline Copper
,”
Mater. Sci. Eng., A
,
443
, pp.
156
166
. 0921-5093
7.
Wilshire
,
B.
, and
Scharning
,
P. J.
, 2008, “
Prediction of Long Term Creep Data for Forged 1Cr–1Mo–0.25V Steel
,”
Mater. Sci. Technol.
,
24
(
1
), pp.
1
9
. 0267-0836
8.
Wilshire
,
B.
, and
Scharning
,
P. J.
, 2008, “
A New Methodology for Analysis of Creep and Creep Fracture Data for 9–12% Chromium Steel
,”
Int. Mater. Rev.
,
53
(
2
), pp.
91
104
. 0950-6608
9.
1990, NIMS Creep Data Sheet No. 9b.
10.
Dorn
,
J. E.
, 1955, “
Some Fundamental Experiments on High Temperature Creep
,”
J. Mech. Phys. Solids
0022-5096,
3
.
11.
Norton
,
F. H.
, 1929,
The Creep of Steel at High Temperatures
,
McGraw-Hill
,
London
.
12.
Garofalo
,
F.
, 1965,
Fundamentals of Creep Rupture in Metal
,
Macmillan
,
New York
.
13.
Wu
,
M. Y.
, and
Sherby
,
O. D.
, 1984, “
Unification of Harper-Dorn and Power Law Creep Through Consideration of Internal Stress
,”
Acta Metall.
0001-6160,
32
, pp.
861
868
.
14.
Monkman
,
F. C.
, and
Grant
,
N. J.
, 1963, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate
,”
Deformation and Fracture at Elevated Temperature
,
N. J.
Grant
and
A. W.
Mullendore
, eds.,
MIT
,
Boston, MA
.
15.
Dorn
,
J. E.
, and
Shepherd
,
L. A.
, 1954, “
What We Need to Know About Creep
,”
ASTM Spec. Tech. Publ.
,
165
, pp.
165
167
. 0066-0558
16.
Larson
,
F. R.
and
Miller
,
J.
, 1952, “
A Time Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
174
(
5
), pp.
765
775
. 0066-0558
17.
Trunin
,
I. I.
,
Golobova
,
N. G.
, and
Loginov
,
E. A.
, 1971, “
New Methods of Extrapolation of Creep Test and Log Time Strength Results
,”
Proceedings of the Fourth International Symposium on Heat Resistant Metallic Materials
,
CSSR
,
Mala Fatra
, p.
168
.
18.
Manson
,
S. S.
, and
Muraldihan
,
U.
, 1983, “
Analysis of Creep Rupture Data in Five Multi Heat Alloys by Minimum Commitment Method Using Double Heat Term Centring Techniques
,” Research Project 638-1, EPRI Cs-3171.
19.
Manson
,
S. S.
, and
Haferd
,
A. M.
, 1953, “
A Linear Time-Temperature Relation for Extrapolation of Creep and Stress—Rupture Data
,” Report No. NACA TN, 2890.
20.
Manson
,
S. S.
, and
Brown
,
W. F.
, Jr.
, 1953, “
Time-Temperature-Stress Relations for the Correlation and Extrapolation of Stress Rupture Data
,”
Proceedings of ASTM
, p.
53
.
21.
Akaike
,
H.
, 1973, “
Information Theory and an Extension of the Maximum Likelihood Principle
,”
Second International Symposium on Information Theory
,
B. N.
Petrov
and
F.
Csaki
, eds.,
Akademiai Kiado
,
Budapest
.
22.
Berndt
,
E.
,
Hall
,
B.
,
Hall
,
R.
, and
Hausman
,
J.
, 1974, “
Estimation and Inference in Non Linear Structural Models
,”
Annals of Economic and Social Measurement
,
3/4
, pp.
653
665
.
23.
2007, Microsoft Excel.
24.
Theil
,
H.
, 1961,
Economic Forecasting and Policy
,
North-Holland
,
Amsterdam
.
You do not currently have access to this content.