Crimped mineral wools are characterized by a strongly anisotropic microstructure, whose local preferential orientation is highly heterogeneous. It is proposed to identify the local anisotropic elastic behavior through a combination of different tools based on image analysis. First, the local orientation map is determined from a reference image. Second, a series of images captured at different loading stages is analyzed with a digital image correlation code to estimate the displacement field. Last, an inverse analysis is applied to evaluate the four elastic moduli of the local elastic properties. This procedure is tested against a set of experimental data on mineral wool with different crimping structures.
Issue Section:
Research Papers
1.
Bergonnier
, S.
, Hild
, F.
, and Roux
, S.
, 2007, “Local Anisotropy Analysis for Non-Smooth Images
,” Pattern Recogn.
0031-3203, 40
, pp. 544
–556
.2.
2000,
Photomechanics
, Rastogi
, P. K.
, ed., Springer
, Berlin
.3.
Rao
, A.
, 1990, A Taxonomy for Texture Description and Identification
, Springer
, Berlin
.4.
Germain
, C.
, Costa
, J. D.
, Lavialle
, O.
, and Baylou
, P.
, 2003, “Multiscale Estimation of Vector Field Anisotropy Application to Texture Characterization
,” Signal Process.
0165-1684, 83
, pp. 1487
–1503
.5.
Bergonnier
, S.
, Hild
, F.
, and Roux
, S.
, 2005, “Strain Heterogeneities and Local Anisotropy in Crimped Glass Wool
,” J. Mater. Sci.
0022-2461, 40
, pp. 5949
–5954
.6.
Besnard
, G.
, Hild
, F.
, and Roux
, S.
, 2006, “Finite-Element Displacement Fields Analysis From Digital Images: Application to Portevin-Le Châtelier Bands
,” Exp. Mech.
0014-4851, 46
, pp. 789
–803
.7.
Grédiac
, M.
, 1989, “Principe des Travaux Virtuels et Identification
,” C. R. Acad Sci. Paris
, 309
, pp. 1
–5
.8.
Grédiac
, M.
, 2004, “The Use of Full-Field Measurement Methods in Composite Material Characterization: Interest and Limitations
,” Composites, Part A
1359-835X, 35
, pp, 751
–761
.9.
Kohn
, R. V.
, and Lowe
, B. D.
, 1988, “A Variational Method for Parameter Identification
,” Model. Math. Anal. Numer.
0764-583X, 22
, pp. 119
–158
.10.
Ladevèze
, P.
, Nedjar
, D.
, and Reynier
, M.
, 1994, “Updating of Finite Element Models Using Vibration Tests
,” AIAA J.
0001-1452, 32
, pp. 1485
–1491
.11.
Geymonat
, G.
, Hild
, F.
, and Pagano
, S.
, 2002, “Identification of Elastic Parameters by Displacement Field Measurement
,” C. R. Mec.
1631-0721, 330
, pp. 403
–408
.12.
Claire
, D.
, Hild
, F.
, and Roux
, S.
, 2002, “Identification of Damage Fields Using Kinematic Measurements
,” C. R. Mec.
1631-0721, 330
, pp. 729
–734
.13.
Claire
, D.
, Hild
, F.
, and Roux
, S.
, 2004, “A Finite Element Formulation to Identify Damage Fields: The Equilibrium Gap Method
,” Int. J. Numer. Methods Eng.
0029-5981, 61
, pp. 189
–208
.14.
Kavanagh
, K. T.
, and Clough
, R. W.
, 1971, “Finite Element Applications in the Characterization of Elastic Solids
,” Int. J. Solids Struct.
0020-7683, 7
, pp. 11
–23
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.