Crimped mineral wools are characterized by a strongly anisotropic microstructure, whose local preferential orientation is highly heterogeneous. It is proposed to identify the local anisotropic elastic behavior through a combination of different tools based on image analysis. First, the local orientation map is determined from a reference image. Second, a series of images captured at different loading stages is analyzed with a digital image correlation code to estimate the displacement field. Last, an inverse analysis is applied to evaluate the four elastic moduli of the local elastic properties. This procedure is tested against a set of experimental data on mineral wool with different crimping structures.

1.
Bergonnier
,
S.
,
Hild
,
F.
, and
Roux
,
S.
, 2007, “
Local Anisotropy Analysis for Non-Smooth Images
,”
Pattern Recogn.
0031-3203,
40
, pp.
544
556
.
2.
2000,
Photomechanics
,
Rastogi
,
P. K.
, ed.,
Springer
,
Berlin
.
3.
Rao
,
A.
, 1990,
A Taxonomy for Texture Description and Identification
,
Springer
,
Berlin
.
4.
Germain
,
C.
,
Costa
,
J. D.
,
Lavialle
,
O.
, and
Baylou
,
P.
, 2003, “
Multiscale Estimation of Vector Field Anisotropy Application to Texture Characterization
,”
Signal Process.
0165-1684,
83
, pp.
1487
1503
.
5.
Bergonnier
,
S.
,
Hild
,
F.
, and
Roux
,
S.
, 2005, “
Strain Heterogeneities and Local Anisotropy in Crimped Glass Wool
,”
J. Mater. Sci.
0022-2461,
40
, pp.
5949
5954
.
6.
Besnard
,
G.
,
Hild
,
F.
, and
Roux
,
S.
, 2006, “
Finite-Element Displacement Fields Analysis From Digital Images: Application to Portevin-Le Châtelier Bands
,”
Exp. Mech.
0014-4851,
46
, pp.
789
803
.
7.
Grédiac
,
M.
, 1989, “
Principe des Travaux Virtuels et Identification
,”
C. R. Acad Sci. Paris
,
309
, pp.
1
5
.
8.
Grédiac
,
M.
, 2004, “
The Use of Full-Field Measurement Methods in Composite Material Characterization: Interest and Limitations
,”
Composites, Part A
1359-835X,
35
, pp,
751
761
.
9.
Kohn
,
R. V.
, and
Lowe
,
B. D.
, 1988, “
A Variational Method for Parameter Identification
,”
Model. Math. Anal. Numer.
0764-583X,
22
, pp.
119
158
.
10.
Ladevèze
,
P.
,
Nedjar
,
D.
, and
Reynier
,
M.
, 1994, “
Updating of Finite Element Models Using Vibration Tests
,”
AIAA J.
0001-1452,
32
, pp.
1485
1491
.
11.
Geymonat
,
G.
,
Hild
,
F.
, and
Pagano
,
S.
, 2002, “
Identification of Elastic Parameters by Displacement Field Measurement
,”
C. R. Mec.
1631-0721,
330
, pp.
403
408
.
12.
Claire
,
D.
,
Hild
,
F.
, and
Roux
,
S.
, 2002, “
Identification of Damage Fields Using Kinematic Measurements
,”
C. R. Mec.
1631-0721,
330
, pp.
729
734
.
13.
Claire
,
D.
,
Hild
,
F.
, and
Roux
,
S.
, 2004, “
A Finite Element Formulation to Identify Damage Fields: The Equilibrium Gap Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
189
208
.
14.
Kavanagh
,
K. T.
, and
Clough
,
R. W.
, 1971, “
Finite Element Applications in the Characterization of Elastic Solids
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
11
23
.
You do not currently have access to this content.