Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.

1.
Socie, D., 1993, “Critical Plane Approaches for Multiaxial Fatigue Damage Assessment,” Advances in Multiaxial Fatigue, ASTM STP 1191, D. L. McDowell and R. Ellis eds., American Society for Testing and Materials, Philadelphia, PA, pp. 7–36.
2.
Paris, P., Gomez, M. P., and Anderson, W. E., 1961, “A Rational Analytical Theory of Fatigue,” The Trend in Engineering, University of Washington, 13, pp. 9–14.
3.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
D85
, pp.
528
534
.
4.
Wheeler
,
O.
,
1972
, “
Spectrum Loading and Crack Growth
,”
ASME J. Basic Eng.
,
94
, pp.
181
186
.
5.
Gilbert
,
C.
,
Dauskardt
,
R.
, and
Ritchie
,
R.
,
1997
, “
Microstructural Mechanisms of Cyclic Fatigue-Crack Propagation in Grain-bridging Ceramics
,”
Ceram. Int.
,
23
, pp.
413
418
.
6.
Drucker
,
D.
, and
Palgen
,
L.
,
1981
, “
On the Stress-Strain Relations Suitable for Cyclic and Other Loading
,”
ASME J. Appl. Mech.
,
48
, pp.
479
485
.
7.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
8.
Willenborg, J., Engle, R., and Wood, R., 1971. “A Crack Growth Retardation Model Using an Effective Stress Concept,” Technical Report AFFDL-TM-71-1-FBR, Air Force Flight Dynamics Laboratory Report.
9.
Xu
,
G.
,
Argon
,
A.
, and
Ortiz
,
M.
,
1995
, “
Nucleation of Dislocations from Crack Tips Under Mixed-Modes of Loading-Implications for Brittle Against Ductile Behavior of Crystals
,”
Philos. Mag. A
,
72
, pp.
415
451
.
10.
Tanaka
,
T.
,
1995
, “
Reliability Analysis of Structure Components Under Fatigue Environment Including Random Overloads
,”
Eng. Fract. Mech.
,
52
, pp.
423
431
.
11.
Sadananda
,
K.
,
Vasudevan
,
A. K.
,
Holtz
,
R. L.
, and
Lee
,
E. U.
,
1999
, “
Analysis of Overload Effects and Related Phenomena
,”
Int. J. Fatigue
,
21
, pp.
S233–S246
S233–S246
.
12.
Elber
,
W.
,
1970
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
,
2
, pp.
37
45
.
13.
El Haddad
,
M.
,
Topper
,
T.
, and
Smith
,
K.
,
1979
, “
Prediction of Non-Propagating Cracks
,”
Eng. Fract. Mech.
,
11
, pp.
573
584
.
14.
Kujawski
,
D.
,
2001
, “
A Fatigue Crack Driving Force Parameter with Load Effect
,”
Int. J. Fatigue
,
23
, pp.
S239–S246
S239–S246
.
15.
McClung
,
R. C.
, and
Sehitoglu
,
H.
,
1989
, “
On the Finite Element Analysis of Fatigue Crack Closure—1. Basic Modeling Issues
,”
Eng. Fract. Mech.
,
33
, pp.
237
252
.
16.
McClung
,
R. C.
, and
Sehitoglu
,
H.
,
1989
, “
On the Finite Element Analysis of Fatigue Crack Closure—2: Numerical results
,”
Eng. Fract. Mech.
,
33
, pp.
253
272
.
17.
McClung
,
R. C.
, and
Sehitoglu
,
H.
,
1991
, “
Characterization of Fatigue Crack Growth in Intermediate and Large Scale Yielding
,”
Mater. Sci. Eng.
,
113
, pp.
15
22
.
18.
McClung
,
R. C.
, and
Sehitoglu
,
H.
,
1992
, “
Closure and Growth of Fatigue Crack at Notches
,”
Mater. Sci. Eng.
,
114
, pp.
1
7
.
19.
Sehitoglu
,
H.
,
Gall
,
K.
, and
Garcia
,
A. M.
,
1996
, “
Recent Advances in Fatigue Crack Growth Modeling
,”
Int. J. Fract.
,
80
, pp.
165
192
.
20.
Oliva
,
V.
,
Cseplo
,
L.
,
Materna
,
A.
, and
Blahova
,
L.
,
1997
, “
FEM Simulation of Fatigue Crack Growth
,”
Mater. Sci. Eng., A
,
A234–236
, pp.
517
520
.
21.
Dougherty
,
J. D.
,
Padovan
,
J.
, and
Srivatsan
,
T. S.
,
1997
, “
Fatigue Crack Propagation and Closure Behavior of Modified 1070 Steel: Finite Element study
,”
Eng. Fract. Mech.
,
56
(
2
), pp.
189
212
.
22.
Zhang
,
J.
,
Zhang
,
J.
, and
Du
,
S.
,
2001
, “
Elastic-Plastic Finite Element Analysis and Experimental Study of Short and Long Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
68
, pp.
1591
1605
.
23.
Miller
,
K. J.
,
1991
, “
Metal Fatigue—Past, Current and Future
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
205
, pp.
291
304
.
24.
Miller
,
K. J.
,
1993
, “
Materials Science Perspective of Metal Fatigue Resistance
,”
Mater. Sci. Technol.
,
9
, pp.
453
462
.
25.
McDowell
,
D. L.
,
1997
, “
Multiaxial Small Fatigue Crack Growth in Metals
,”
Int. J. Fatigue
,
19
, pp.
S127–S135
S127–S135
.
26.
McDowell
,
D. L.
,
1997
, “
An Engineering Model for Propagation of Small Crack in Fatigue
,”
Eng. Fract. Mech.
,
56
, pp.
357
377
.
27.
Newman
,
J. C.
,
1981
, “
Stress Intensity Factor and Crack Opening Displacements for Round Compact specimens
,”
Int. J. Fatigue
,
17
, pp.
567
578
.
28.
Altair HyerMesh, Version 5.0, 2001, Altair Engineering, Inc.
29.
ABAQUS, 1999, User’s Manual and Theory Manual, Hibbit, Karlsson and Sorensen, Inc.
30.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity: Part I—Development of Constitutive Equations
,”
ASME J. Appl. Mech.
,
63
, pp.
720
725
.
31.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity: Part II—Implement of the New Model and Comparison of Theory with Experiments
,”
ASME J. Appl. Mech.
,
63
, pp.
726
733
.
32.
Jiang
,
Y.
, and
Kurath
,
P.
,
1996
, “
A Theoretical Evaluation of the Incremental Plasticity Hardening Algorithms for Cyclic Nonproportional Loadings
,”
Acta Mech.
,
118
, pp.
213
234
.
33.
Jiang
,
Y.
, and
Kurath
,
P.
,
1996
, “
Characteristics of the Armstrong-Frederick Type Plasticity Models
,”
Int. J. Plast.
,
12
, pp.
387
415
.
34.
Jiang, Y., and Sehitoglu, H., 1992, “Fatigue and Stress Analyses of Rolling Contact,” Report No. 161, A Report of the Materials Engineering-Mechanical Behavior, College of Engineering, University of Illinois at Urbana-Champaign, UILU-ENG 92-3602.
35.
Jiang
,
Y.
,
2000
, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
, pp.
19
32
.
36.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
,
2002
, “
Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
124
, pp.
699
708
.
37.
Pook, L. P., 2000, Linear Elastic Fracture Mechanics for Engineers: Theory and Applications, Wit Press, Southampton, Boston.
38.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Cyclic Ratchetting of 1070 Steel under Multiaxial Stress State
,”
Int. J. Plast.
,
10
, pp.
579
608
.
39.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Multiaxial Cyclic Ratchetting under Multiple Step Loading
,”
Int. J. Plast.
,
10
, pp.
849
870
.
40.
Jiang
,
Y.
, and
Kurath
,
P.
,
1997
, “
An Investigation of Cyclic Transient Behavior and Implications on Fatigue Life Estimates
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
161
170
.
41.
Jiang
,
Y.
, and
Kurath
,
P.
,
1997
, “
Non-Proportional Cyclic Deformation: Critical Experiments and Analytical Modeling
,”
Int. J. Plast.
,
13
, pp.
743
763
.
42.
Jiang, Y., Feng, M., and Ding, F., 2003, “Modeling of Notch Effect on Crack Propagation,” Second International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics (34th ASTM National Symposium on Fatigue and Fracture Mechanics), Nov. 19–21, 2003, Tampa, FL.
43.
McClung
,
R. C.
,
1989
, “
Closure and Growth of Mode I Cracks in Biaxial Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
12
(
5
), pp.
447
460
.
44.
ASTM, 1999, “Test Method for Measurement of Fatigue Crack Growth Rates,” Annual Book of ASTM Standards, E647-99, pp. 591–630.
45.
Goh
,
C. H.
,
Wallace
,
J. M.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
,
2001
, “
Polycrystal Plasticity Simulations of Fretting Fatigue
,”
Int. J. Plast.
,
23
, pp.
423
435
.
You do not currently have access to this content.