The high strain tensile deformation of open-cell foams is analyzed, using a Kelvin foam lattice model. The stretching, bending, and twisting of elastic cell edges is analyzed, and the deformed cell shapes predicted. The stress-strain relation and Poisson’s ratio are predicted for strains up to 40% for tension in the [100] and [111] directions of the BCC lattice. The latter prediction is closest to stress-strain curves for polyurethane foams, especially when the cell shape anisotropy is taken into account. The change from edge bending to extension as the main deformation mechanisms, for strains exceeding 20% increases the slope of the stress-strain curve. A comparison is made with irregular cell structure models. [S0094-4289(00)01001-X]

1.
Kelvin
,
Lord
, (
Thompson
,
W.
),
1887
, “
On the Division of Space with Minimum Partitional Area
,”
Philos. Mag.
,
24
, pp.
503
514
.
2.
Zhu
,
H. X.
,
Mills
,
N. J.
, and
Knott
,
J. F.
,
1997
, “
Analysis of the High Strain Compression of Open-Cell Foams
,”
J. Mech. Phys. Solids
,
45
, pp.
1875
1904
.
3.
Warren
,
W. E.
, and
Kraynik
,
A. M.
,
1997
, “
Linear Elastic Behavior of a Low-Density Kelvin Foam with Open Cells
,”
ASME J. Appl. Mech.
,
64
, pp.
787
794
.
4.
Gent
,
A. N.
, and
Thomas
,
A. G.
,
1959
, “
The Deformation of Foamed Elastic Materials
,”
J. Appl. Polym. Sci.
,
1
, pp.
107
113
.
5.
Lederman
,
J. M.
,
1971
, “
The Prediction of the Tensile Properties of Flexible Foams
,”
J. Appl. Polym. Sci.
,
45
, pp.
693
703
.
6.
Ko
,
W. L.
,
1965
, “
Deformations of Foamed Elastomers
,”
J. Cell. Plast.
,
1
, pp.
45
50
.
1.
Dement’ev
,
A. G.
, and
Tarakanov
,
O. G.
,
1970
, “
Model Analysis of Plastics Foams of the Polyurethane Type
,”
Mekh. Polim.
,
6
, pp.
859
865
;
2.
[
Polym. Mech.
,
6
, pp.
744
749
].
1.
Warren
,
W. E.
, and
Kraynik
,
A. M.
,
1991
, “
The Non-Linear Elastic Behavior of Open-Cell Foams
,”
ASME J. Appl. Mech.
,
58
, pp.
376
3811
.
2.
Pajon, M., Backacha, M. et al., 1996, “Modelling of PU Foam Behavior-Applications in the Field of Automotive Seats,” SAE SP-1155, paper 960513.
3.
El-Ratal
,
W. H.
, and
Mallick
,
P. K.
,
1996
, “
Elastic Response of Flexible Polyurethane Foams in Uniaxial Tension
,”
ASME J. Eng. Mater. Technol.
,
118
, pp.
157
161
.
4.
Dawson
,
J. R.
and
Shortall
,
J. B.
,
1982
, “
The Microstructure of Rigid Polyurethane Foam
,”
J. Mater. Sci.
,
17
, pp.
220
224
.
5.
Zhu
,
H.
,
Knott
,
J. P.
, and
Mills
,
N. J.
,
1997
, “
The Elastic Constants of Open Cell Foams Having Tetrakaidecahedral Cells
,”
J. Mech. Phys. Solids
,
45
, pp.
319
343
.
6.
Phelan
,
R.
,
Weaire
,
D.
,
Peters
,
E. A. J. F.
, and
Verbist
,
G.
,
1996
, “
The Conductivity of a Foam
,”
J. Phys.: Condens. Matter
,
8
, pp.
L475–L482
L475–L482
.
7.
Warren
,
W. E.
,
Neilsen
,
M. K.
, and
Kraynik
,
A. M.
,
1997
, “
Torsional Rigidity of a Plateau Border
,”
Mech. Res. Commun.
,
24
, pp.
667
672
.
8.
Schulmeister, V., 1998, “Modelling of the Mechanical Properties of Low Density Polymer Foams,” Ph.D. thesis, Technical University of Delfit.
9.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
1997
, “
The Effect of Heat Transfer and Poisson’s Ratio on the Compressive Response of Closed Cell Polymer Foams
,”
Cell. Polym.
,
16
, pp.
87
119
10.
Kraynik, A. M., Neilsen, M. K., Reinhelt, R. A., and Warren, W. E., 1999, “Foam Micromechanics,” NATO Adv. Sci. Inst. Series E: Appl. Sci., Vol. 354, Foams and Emulsions, N. Rivier and J. F. Sadok, eds., Kluwer, pp. 187–204.
11.
Zhu
,
H. X.
, and
Mills
,
N. J.
,
1999
, “
Analysis of Creep in Open-Cell Foams
,”
J. Mech. Phys. Solids
,
47
, pp.
1437
1457
.
You do not currently have access to this content.