Graphical Abstract Figure

Schematic diagram of residual stress

Graphical Abstract Figure

Schematic diagram of residual stress

Close modal

Abstract

During micro-grinding, multiple abrasive grains on grinding wheel circulate on the workpiece causing alternating mechanical and thermal loads which result in microstructure evolution. The microstructure evolution affects the flow stress of the material, which in turn affects force and temperature. This paper thoroughly investigates the cyclic iterative mechanism and proposes an analytical model to predict micro-grinding-induced residual stress. In this investigation, the flow stress model is developed considering temperature, strain, strain rate, yield stress, and material microstructure evolution, based on which, the micro-grinding force and temperature are calculated. On the basis, the evolution of grain size and phases transformation induced by force and temperature are calculated, in turn affected grinding force by flow stress. Then, the analytical model of residual stress is proposed incorporating the stresses induced by mechanical and thermal loadings as well as microstructure evolution. Moreover, the elastic or plastic deformation is determined according to Von-Mises criterion with the developed plastic modulus model in the stress relaxation process. Finally, the residual stress is measured to validate the improved iterative model. By comparing the traditional models, the results indicated that the developed cyclic iterative model obtains a higher accurate prediction of residua stress.

References

1.
Pan
,
Z.
,
Shih
,
D. S.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2017
, “
Residual Stress Prediction for Turning of Ti–6Al–4V Considering the Microstructure Evolution
,”
Proc. Inst. Mech. Eng. B
,
233
(
1
), pp.
109
117
.
2.
Salvati
,
E.
,
Zhang
,
H.
,
Fong
,
K. S.
,
Song
,
X.
, and
Korsunsky
,
A. M.
,
2017
, “
Separating Plasticity-Induced Closure and Residual Stress Contributions to Fatigue Crack Retardation Following an Overload
,”
J. Mech. Phys. Solids
,
98
, pp.
222
235
.
3.
Hong
,
J.-H.
,
Park
,
H.
,
Kim
,
J.
,
Seok
,
M.-Y.
,
Choi
,
H.
,
Kwon
,
Y. N.
, and
Lee
,
D. J.
,
2023
, “
Effect of the Residual Stress Induced by Surface Severe Plastic Deformation on the Tensile Behavior of an Aluminum Alloy
,”
J. Mater. Res. Technol.
,
24
, pp.
7076
7090
.
4.
Sun
,
C.
,
Hong
,
Y.
,
Xiu
,
S.
, and
Zhang
,
P.
,
2021
, “
Investigation on the Influence of Dynamic Characteristic on Grinding Residual Stress
,”
Int. J. Adv. Manuf. Technol.
,
115
(
5
), pp.
1853
1875
.
5.
Hong
,
Y.
,
Sun
,
C.
,
Xiu
,
S.
,
Xu
,
C.
,
Liang
,
D.
, and
Deng
,
Y.
,
2023
, “
Grinding Residual Stress Optimization Under the Micro-carburizing Effect
,”
Tribol. Int.
,
188
, p.
108807
.
6.
Wei
,
S. L.
,
Zhao
,
H.
,
Jing
,
J. T.
,
Yun
,
F. H.
, and
Li
,
X. L.
,
2016
, “
Investigation on Surface Residual Stress Distribution and Evaluation of Engineering Ceramics in Rotary Ultrasonic Grinding Machining
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
15
), pp.
2773
2782
.
7.
Shao
,
Y.
,
2015
, “
Predictive Modeling of Residual Stress in MQL Grinding and Surface Characteristics in Grinding of Ceramics
,” Ph.D. Thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
8.
Shah
,
S. M.
,
Nélias
,
D.
,
Zain-ul-abdein
,
M.
, and
Coret
,
M.
,
2012
, “
Numerical Simulation of Grinding Induced Phase Transformation and Residual Stresses in AISI-52100 Steel
,”
Finite Elem. Anal. Des.
,
61
, pp.
1
11
.
9.
Ding
,
Z.
,
Sun
,
G.
,
Guo
,
M.
,
Jiang
,
X.
,
Li
,
B.
, and
Liang
,
S. Y.
,
2020
, “
Effect of Phase Transition on Micro-grinding-Induced Residual Stress
,”
J. Mater. Process. Technol.
,
281
, p.
116647
.
10.
Jafari
,
M.
,
Jamshidian
,
M.
, and
Ziaei-Rad
,
S.
,
2017
, “
A Finite-Deformation Dislocation Density-Based Crystal Viscoplasticity Constitutive Model for Calculating the Stored Deformation Energy
,”
Int. J. Mech. Sci.
,
128–129
, pp.
486
498
.
11.
Ding
,
Z.
,
Zhao
,
Y.
,
Guo
,
M.
,
Guo
,
F.
,
Lin
,
J.
, and
Liang
,
S. Y.
,
2023
, “
Dislocation Density and Shear Texture Effects on Grinding Force During the Grinding of Maraging Steel 3J33
,”
J. Manuf. Process.
,
86
, pp.
311
325
.
12.
Guo
,
L.
, and
Fujita
,
F.
,
2018
, “
Modeling the Microstructure Evolution in AZ31 Magnesium Alloys During Hot Rolling
,”
J. Mater. Process. Technol.
,
255
, pp.
716
723
.
13.
He
,
X.
,
Liu
,
L.
,
Zeng
,
T.
, and
Yao
,
Y.
,
2020
, “
Micromechanical Modeling of Work Hardening for Coupling Microstructure Evolution, Dynamic Recovery and Recrystallization: Application to High Entropy Alloys
,”
Int. J. Mech. Sci.
,
177
, p.
105567
.
14.
Arısoy
,
Y. M.
,
Guo
,
C.
,
Kaftanoğlu
,
B.
, and
Özel
,
T.
,
2016
, “
Investigations on Microstructural Changes in Machining of Inconel 100 Alloy Using Face Turning Experiments and 3D Finite Element Simulations
,”
Int. J. Mech. Sci.
,
107
, pp.
80
92
.
15.
Feng
,
Y.
,
Hung
,
T.-P.
,
Lu
,
Y.-T.
,
Lin
,
Y.-F.
,
Hsu
,
F.-C.
,
Lin
,
C.-F.
,
Lu
,
Y.-C.
, and
Liang
,
S. Y.
,
2019
, “
Residual Stress Prediction in Laser-Assisted Milling Considering Recrystallization Effects
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1
), pp.
393
402
.
16.
Gong
,
P.
,
Zhang
,
Y.
,
Wang
,
C.
,
Cui
,
X.
,
Li
,
R.
,
Sharma
,
S.
,
Liu
,
M.
, et al
,
2023
, “
Residual Stress Generation in Grinding: Mechanism and Modeling
,”
J. Mater. Process. Technol.
,
24
, p.
118262
.
17.
Zhao
,
M.
,
Ji
,
X.
, and
Liang
,
S. Y.
,
2019
, “
Force Prediction in Micro-grinding Maraging Steel 3J33b Considering the Crystallographic Orientation and Phase Transformation
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2821
2836
.
18.
Zishan
,
D.
,
2016
,
Research on Surface Integrity and Process Optimal Criterion of Micro-grinding
,
Donghua University
,
Shanghai
.
19.
Avrami
,
M.
,
1940
, “
Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei
,”
J. Chem. Phys.
,
8
(
2
), pp.
212
224
.
20.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
.
21.
Zhao
,
M.
,
Ji
,
X.
, and
Liang
,
S. Y.
,
2019
, “
Micro-grinding Temperature Prediction Considering the Effects of Crystallographic Orientation and the Strain Induced by Phase Transformation
,”
Int. J. Precis. Eng. Manuf.
,
20
(
11
), pp.
1861
1876
.
22.
Bai
,
X.
,
Chen
,
J.
,
Guan
,
X.
,
Peng
,
Z.
,
Li
,
G.
,
Zhou
,
H.
,
Shi
,
X.
,
Sun
,
L.
, and
Fu
,
B.
,
2022
, “
Modeling and Analysis of Residual Stresses of Camshaft Induced by Swing Grinding Processes
,”
Int. J. Adv. Manuf. Technol.
,
121
(
9
), pp.
6375
6391
.
23.
Zhao
,
M.
,
Ji
,
X.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2020
, “
Phase Transformation Prediction Considering Crystallographic Orientation in Microgrinding Multiphase Material
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
104501
.
24.
Zhao
,
F.
,
Ren
,
Y.
, and
Yan
,
Y.
,
2012
, “
Dynamic Recrystallization of 18Ni(1700 MPa) Maraging Steel During Hot Deformation
,”
Adv. Mater. Res.
,
602–604
, pp.
441
447
.
25.
Fu
,
H.
,
Wang
,
X.
,
Xie
,
L.
,
Hu
,
X.
,
Umer
,
U.
,
Rehman
,
A. U.
,
Abidi
,
M. H.
, and
Ragab
,
A. E.
,
2020
, “
Dynamic Behaviors and Microstructure Evolution of Iron–Nickel Based Ultra-high Strength Steel by SHPB Testing
,”
Metals
,
10
(
1
), p.
62
.
26.
Zhang
,
P.
,
Huang
,
C.
,
Zhu
,
H.
,
Wang
,
J.
,
Yao
,
Y.
, and
Yao
,
P.
,
2021
, “
The Research of Tool Wear Criterion in Micro Cutting Using the Elastic Recovery Ratio of High-Strength Elastic Alloy 3J33B
,”
Int. J. Adv. Manuf. Technol.
,
114
(
5–6
), pp.
1767
1776
.
27.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, International Ed., Vol. 42,
McGraw-Hill
,
New York
.
28.
Fergani
,
O.
,
Shao
,
Y.
,
Lazoglu
,
I.
, and
Liang
,
S. Y.
,
2014
, “
Temperature Effects on Grinding Residual Stress
,”
Procedia CIRP
,
14
, pp.
2
6
.
29.
Saif
,
M. T. A.
,
Hui
,
C. Y.
, and
Zehnder
,
A. T.
,
1993
, “
Interface Shear Stresses Induced by Non-uniform Heating of a Film on a Substrate
,”
Thin Solid Films
,
224
(
2
), pp.
159
167
.
30.
Lin
,
J.
,
Pruncu
,
C.
,
Zhu
,
L.
,
Li
,
J.
,
Zhai
,
Y.
,
Chen
,
L.
,
Guan
,
Y.
, and
Zhao
,
G.
,
2022
, “
Deformation Behavior and Microstructure in the Low-Frequency Vibration Upsetting of Titanium Alloy
,”
J. Mater. Process. Technol.
,
299
, p.
117360
.
31.
Zheng
,
B.
,
Luo
,
Y.
,
Liao
,
H.
, and
Zhang
,
C.
,
2017
, “
Investigation of the Crystallinity of Suspension Plasma Sprayed Hydroxyapatite Coatings
,”
J. Eur. Ceram. Soc.
,
15
(
15
), pp.
5017
5021
.
You do not currently have access to this content.