Abstract

Laser surface texturing uses a pulsed laser that is scanned on the surface, wherein each pulse creates a micro-crater through material ablation. A variety of textures can be generated depending on the laser parameters and the overlap of the laser spots. This work presents a computational model that can predict the topography of a textured surface produced using a nanosecond pulsed laser. The model involves a multi-physics approach that considers laser ablation with plasma effects and the melt pool’s fluid dynamics to obtain the crater profile for a single pulse. The 3D surface profile created from the multi-physics model is mathematically superimposed to mimic the spatial overlapping of multiple pulses. The model predicts surface topography when a laser is scanned along a linear track with successive overlapping tracks. The experiments have confirmed that the proposed model has an accuracy greater than 90% in predicting surface roughness (Sa), as well as volume parameters such as core void volume (Vvc) and valley void volume (Vvv). It was observed that the variation of these surface characteristics is highly non-linear with the process parameters. Furthermore, the model is used to design engineered surfaces to modify friction coefficient, adhesion, and leakage probability. It is demonstrated that the surface parameters for functional requirements can be modified significantly just by varying the overlap of the laser spots in different directions. The proposed model can be used to create textured surfaces for various applications through an appropriate choice of laser parameters and scanning parameters.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bonse
,
J.
,
Kirner
,
S. V.
,
Griepentrog
,
M.
,
Spaltmann
,
D.
, and
Krüger
,
J.
,
2018
, “
Femtosecond Laser Texturing of Surfaces for Tribological Applications
,”
Materials
,
11
(
5
), p.
801
.
2.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer Science & Business Media
,
London
.
3.
Jackson
,
M. J.
, and
O’Neill
,
W.
,
2003
, “
Laser Micro-Drilling of Tool Steel Using Nd:YAG Lasers
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
517
525
.
4.
Zhang
,
G.
,
Hua
,
X.
,
Li
,
F.
,
Zhang
,
Y.
,
Shen
,
C.
, and
Cheng
,
J.
,
2019
, “
Effect of Laser Cleaning Process Parameters on the Surface Roughness of 5754-Grade Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
105
, pp.
2481
2490
.
5.
Steyn
,
J.
,
Naidoo
,
K.
, and
Land
,
K.
,
2007
, “
Improvement of the Surface Finish Obtained by Laser Ablation With a Nd: YAG Laser on Pre-Ablated Tool Steel
,”
International Conference on Competitive Manufacturing, COMA 2007
,
Stellenbosch, South Africa
,
Jan. 31–Feb 2
.
6.
Leone
,
C.
,
Genna
,
S.
,
Caprino
,
G.
, and
De Iorio
,
I.
,
2010
, “
AISI 304 Stainless Steel Marking by A Q-Switched Diode Pumped Nd:YAG Laser
,”
J. Mater. Process. Technol.
,
210
(
10
), pp.
1297
1303
.
7.
Sikora
,
A.
,
Coustillier
,
G.
,
Sarnet
,
T.
, and
Sentis
,
M.
,
2019
, “
Laser Engraving Optimization for Achieving Smooth Sidewalls
,”
Appl. Surf. Sci.
,
492
, pp.
382
391
.
8.
Singh
,
M. A.
,
Hanzel
,
O.
,
Singh
,
R. K.
,
Šajgalík
,
P.
, and
Marla
,
D.
,
2020
, “
Laser Surface Modification of Wire-Electric Discharge Machined Graphene Nanoparticle Reinforced SiC Composites
,”
J. Micro Nano-Manuf.
,
8
(
1
), pp.
1
6
.
9.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2012
, “
Pulsed Laser Micro Polishing: Surface Prediction Model
,”
J. Manuf. Processes
,
14
(
3
), pp.
307
315
.
10.
Nikolidakis
,
E.
, and
Antoniadis
,
A.
,
2019
, “
FEM Modeling Simulation of Laser Engraving
,”
Int. J. Adv. Manuf. Technol.
,
105
, pp.
3489
3498
.
11.
Rudenko
,
A.
,
Mauclair
,
C.
,
Garrelie
,
F.
,
Stoian
,
R.
, and
Colombier
,
J. P.
,
2019
, “
Amplification and Regulation of Periodic Nanostructures in Multipulse Ultrashort Laser-Induced Surface Evolution by Electromagnetic-Hydrodynamic Simulations
,”
Phys. Rev. B
,
99
(
23
), pp.
1
11
.
12.
Cadot
,
G. B.
,
Axinte
,
D. A.
, and
Billingham
,
J.
,
2016
, “
Continuous Trench, Pulsed Laser Ablation for Micro-Machining Applications
,”
Int. J. Mach. Tools Manuf.
,
107
, pp.
8
20
.
13.
Cha
,
D.
,
Axinte
,
D.
, and
Billingham
,
J.
,
2019
, “
Geometrical Modelling of Pulsed Laser Ablation of High Performance Metallic Alloys
,”
Int. J. Mach. Tools Manuf.
,
141
, pp.
78
88
.
14.
Chen
,
Y. Z.
,
Xie
,
X. D.
, and
Xiao
,
X. P.
,
2019
, “
An Evolving Model of Surface Profile Produced by Nanosecond Laser Ablation on Aluminum Alloy
,”
J. Laser Micro Nanoeng.
,
14
(
2
), pp.
152
160
.
15.
Narayanan
,
V.
,
Singh
,
R.
, and
Marla
,
D.
,
2021
, “
A Computational Model to Predict Surface Roughness in Laser Surface Processing of Mild Steel Using Nanosecond Pulses
,”
J. Manuf. Processes
,
68
, pp.
1880
1889
.
16.
Beutl
,
M.
,
Pottlacher
,
G.
, and
Jäger
,
H.
,
1994
, “
Thermophysical Properties of Liquid Iron
,”
Int. J. Thermophys.
,
15
(
6
), pp.
1323
1331
.
17.
Stafe
,
M.
,
Negutu
,
C.
, and
Popescu
,
I. M.
,
2007
, “
Theoretical Determination of the Ablation Rate of Metals in Multiple-Nanosecond Laser Pulses Irradiation Regime
,”
Appl. Surf. Sci.
,
253
(
15
), pp.
6353
6358
.
18.
Washko
,
S.
, and
Aggen
,
G.
,
1990
,
ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys
,
ASM International
,
Novelty, OH
.
19.
Oliveira
,
V.
, and
Vilar
,
R.
,
2007
, “
Finite Element Simulation of Pulsed Laser Ablation of Titanium Carbide
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
7810
7814
.
20.
Kelly
,
R.
, and
Miotello
,
A.
,
1996
, “
Comments on Explosive Mechanisms of Laser Sputtering
,”
Appl. Surf. Sci.
,
96–98
, pp.
205
215
.
21.
Sedao
,
X.
,
Lenci
,
M.
,
Rudenko
,
A.
,
Faure
,
N.
,
Pascale-Hamri
,
A.
,
Colombier
,
J. P.
, and
Mauclair
,
C.
,
2019
, “
Influence of Pulse Repetition Rate on Morphology and Material Removal Rate of Ultrafast Laser Ablated Metallic Surfaces
,”
Optics Lasers Eng.
,
116
, pp.
68
74
.
22.
Narayanan
,
V.
,
Singh
,
R. K.
, and
Marla
,
D.
,
2018
, “
Laser Cleaning for Rust Removal on Mild Steel: An Experimental Study on Surface Characteristics
,”
International Conference on Design and Manufacturing Engineering (ICDME 2018)
,
Melbourne, Australia
,
July 16–18
.
23.
He
,
B.
,
Webb
,
D. P.
, and
Petzing
,
J.
,
2021
, “
Areal Surface Texture Parameters for Copper/Glass Plating Adhesion Characteristics
,”
Measurement Sci. Rev.
,
21
(
1
), pp.
11
18
.
24.
Shi
,
R.
,
Wang
,
B.
,
Yan
,
Z.
,
Wang
,
Z.
, and
Dong
,
L.
,
2019
, “
Effect of Surface Topography Parameters on Friction and Wear of Random Rough Surface
,”
Materials
,
12
(
7
), p.
2762
.
25.
Bataille
,
C.
,
Deltombe
,
R.
,
Jourani
,
A.
, and
Bigerelle
,
M.
,
2017
, “
Joint Properties of a Tool Machining Process to Guarantee Fluid-Proof Abilities
,”
Surf. Topogr. Metrol. Prop.
,
5
(
4
), p.
045002
.
You do not currently have access to this content.