Abstract

Simultaneously guaranteeing material removal accuracy and surface quality of robotic grinding is crucial. However, existing studies of robotic grinding process optimization have mainly focused on a single indicator that solely considers contour error or surface roughness, while studies that simultaneously investigate the impact of contact force, spindle speed, feed rate, inclination angle, and path space on the material removal profile (MRP) and the surface roughness are lacking. This paper proposes a hybrid optimization method that considers dimensional accuracy and surface quality constraints. First, an MRP model that considers the coupling influence of the contact force, spindle speed, feed rate, and inclination angle is presented. Then, a surface roughness model that considers the inclination angle is established. Finally, the contact force, feed rate, inclination angle, and path space are simultaneously optimized to satisfy the hybrid constraints of MRP accuracy and surface roughness. The proposed method ensures maximum grinding efficiency while satisfying dimensional accuracy and surface quality constraints. The proposed method is verified on an industrial robotics grinding system with a pneumatic force-controlled actuator. The results show that the proposed method has higher profile accuracy and lower surface roughness than traditional methods.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sun
,
H.
,
Yang
,
J.
,
Li
,
D.
, and
Ding
,
H.
,
2021
, “
An on-Line Tool Path Smoothing Algorithm for 6r Robot Manipulator With Geometric and Dynamic Constraints
,”
Sci. China Technol. Sci.
,
64
(
9
), pp.
1907
1919
.
2.
Yang
,
Z.
,
Chu
,
Y.
,
Xu
,
X.
,
Huang
,
H.
,
Zhu
,
D.
,
Yan
,
S.
, and
Ding
,
H.
,
2021
, “
Prediction and Analysis of Material Removal Characteristics for Robotic Belt Grinding Based on Single Spherical Abrasive Grain Model
,”
Int. J. Mech. Sci.
,
190
, p.
106005
.
3.
Chen
,
F.
,
Zhao
,
H.
,
Li
,
D.
,
Chen
,
L.
,
Tan
,
C.
, and
Ding
,
H.
,
2019
, “
Contact Force Control and Vibration Suppression in Robotic Polishing With a Smart end Effector
,”
Rob. Comput.-Integr. Manuf.
,
57
, pp.
391
403
.
4.
Zhang
,
J.
,
Shi
,
Y.
,
Lin
,
X.
, and
Li
,
Z.
,
2017
, “
Parameter Optimization of Five-Axis Polishing Using Abrasive Belt Flap Wheel for Blisk Blade
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4805
4812
.
5.
Suzuki
,
H.
,
Okada
,
M.
,
Yamagata
,
Y.
,
Morita
,
S.
, and
Higuchi
,
T.
,
2012
, “
Precision Grinding of Structured Ceramic Molds by Diamond Wheel Trued with Alloy Metal
,”
CIRP Ann.
,
61
(
1
), pp.
283
286
.
6.
Yan
,
G.
, and
Fang
,
F.
,
2019
, “
Fabrication of Optical Freeform Molds Using Slow Tool Servo With Wheel Normal Grinding
,”
CIRP Ann.
,
68
(
1
), pp.
341
344
.
7.
Wang
,
T.
,
Zou
,
L.
,
Wan
,
Q.
,
Zhang
,
X.
,
Li
,
Y.
, and
Huang
,
Y.
,
2021
, “
A High-Precision Prediction Model of Surface Roughness in Abrasive Belt Flexible Grinding of Aero-Engine Blade
,”
J. Manuf. Process.
,
66
, pp.
364
375
.
8.
Li
,
X.
,
Huang
,
T.
,
Zhao
,
H.
,
Zhang
,
X.
,
Yan
,
S.
,
Dai
,
X.
, and
Ding
,
H.
,
2022
, “
A Review of Recent Advances in Machining Techniques of Complex Surfaces
,”
Sci. China Technol. Sci.
,
65
(
9
), pp.
1915
1939
.
9.
Tan
,
S.
,
Yang
,
J.
, and
Ding
,
H.
,
2023
, “
A Prediction and Compensation Method of Robot Tracking Error Considering Pose-Dependent Load Decomposition
,”
Rob. Comput.-Integr. Manuf.
,
80
, p.
102476
.
10.
Li
,
J.
,
Zou
,
L.
,
Luo
,
G.
,
Wang
,
W.
, and
Lv
,
C.
,
2023
, “
Enhancement and Evaluation in Path Accuracy of Industrial Robot for Complex Surface Grinding
,”
Rob. Comput.-Integr. Manuf.
,
81
, p.
102521
.
11.
Wang
,
P.
,
Wang
,
J.
, and
Fang
,
F.
,
2021
, “
Study on Mechanisms of Photon-Induced Material Removal on Silicon at Atomic and Close-to-Atomic Scale
,”
Nanomanuf. Metrol.
,
4
(
4
), pp.
216
225
.
12.
Chen
,
S.
,
Yang
,
S.
,
Cheung
,
C. F.
,
Ho
,
L. T.
, and
Zhang
,
F.
,
2022
, “
Suppression Strategy of Micro-Waviness Error in Ultra-Precision Parallel Grinding
,”
Nanomanuf. Metrol.
,
5
(
4
), pp.
423
429
.
13.
Jin
,
S.
,
Bukkapatnam
,
S.
,
Michael Hayes
,
S.
, and
Ding
,
Y.
,
2023
, “
Vibration Signal-Assisted Endpoint Detection for Long-Stretch, Ultraprecision Polishing Processes
,”
ASME J. Manuf. Sci. Eng.
,
145
(
6
), p.
061007
.
14.
Das
,
J.
,
Bales
,
G. L.
,
Kong
,
Z.
, and
Linke
,
B.
,
2018
, “
Integrating Operator Information for Manual Grinding and Characterization of Process Performance Based on Operator Profile
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081011
.
15.
Ke
,
X.
,
Yu
,
Y.
,
Li
,
K.
,
Wang
,
T.
,
Zhong
,
B.
,
Wang
,
Z.
,
Kong
,
L.
, et al
,
2023
, “
Review on Robot-Assisted Polishing: Status and Future Trends
,”
Rob. Comput.-Integr. Manuf.
,
80
, p.
102482
.
16.
Zhou
,
P.
,
Zhao
,
X.
,
Tao
,
B.
, and
Ding
,
H.
,
2020
, “
Time-varying Isobaric Surface Reconstruction and Path Planning for Robotic Grinding of Weak-Stiffness Workpieces
,”
Rob. Comput.-Integr. Manuf.
,
64
, p.
101945
.
17.
Zhu
,
D.
,
Feng
,
X.
,
Xu
,
X.
,
Yang
,
Z.
,
Li
,
W.
,
Yan
,
S.
, and
Ding
,
H.
,
2020
, “
Robotic Grinding of Complex Components: a Step Towards Efficient and Intelligent Machining—Challenges, Solutions, and Applications
,”
Rob. Comput.-Integr. Manuf.
,
65
, p.
101908
.
18.
Chen
,
F.
,
Zhao
,
H.
,
Li
,
D.
,
Chen
,
L.
,
Tan
,
C.
, and
Ding
,
H.
,
2019
, “
Robotic Grinding of a Blisk with two Degrees of Freedom Contact Force Control
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
461
474
.
19.
Lu
,
L.
,
Zhang
,
L.
,
Fan
,
C.
, and
Wang
,
H.
,
2022
, “
High-Order Joint-Smooth Trajectory Planning Method Considering Tool-Orientation Constraints and Singularity Avoidance for Robot Surface Machining
,”
J. Manuf. Process.
,
80
, pp.
789
804
.
20.
Mohammad
,
A. E. K.
,
Hong
,
J.
, and
Wang
,
D.
,
2018
, “
Design of a Force-Controlled end-Effector With low-Inertia Effect for Robotic Polishing Using Macro-Mini Robot Approach
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
54
65
.
21.
Wang
,
W.
,
Li
,
J.
, and
Fan
,
W.
,
2019
, “
Investigation Into Static Contact Behavior in Belt Rail Grinding Using a Concave Contact Wheel
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2825
2835
.
22.
Qi
,
J.
,
Chen
,
B.
, and
Zhang
,
D.
,
2020
, “
Multi-Information Fusion-Based Belt Condition Monitoring in Grinding Process Using the Improved-Mahalanobis Distance and Convolutional Neural Networks
,”
J. Manuf. Process.
,
59
, pp.
302
315
.
23.
Zhao
,
X.
,
Tao
,
B.
,
Han
,
S.
, and
Ding
,
H.
,
2021
, “
Accuracy Analysis in Mobile Robot Machining of Large-Scale Workpiece
,”
Rob. Comput.-Integr. Manuf.
,
71
, p.
102153
.
24.
Hu
,
Q.
,
Chen
,
Y.
, and
Yang
,
J.
,
2020
, “
On-line Contour Error Estimation and Control for Corner Smoothed Five-Axis Tool Paths
,”
Int. J. Mech. Sci.
,
171
, p.
105377
.
25.
Ye
,
C.
,
Yang
,
J.
,
Zhao
,
H.
, and
Ding
,
H.
,
2021
, “
Task-Dependent Workpiece Placement Optimization for Minimizing Contour Errors Induced by the low Posture-Dependent Stiffness of Robotic Milling
,”
Int. J. Mech. Sci.
,
205
, p.
106601
.
26.
Ye
,
C.
,
Yang
,
J.
, and
Ding
,
H.
,
2022
, “
High-Accuracy Prediction and Compensation of Industrial Robot Stiffness Deformation
,”
Int. J. Mech. Sci.
,
233
, p.
107638
.
27.
Li
,
Z.
,
Zhang
,
Z.
,
Shi
,
J.
, and
Wu
,
D.
,
2019
, “
Prediction of Surface Roughness in Extrusion-Based Additive Manufacturing With Machine Learning
,”
Rob. Comput.-Integr. Manuf.
,
57
, pp.
488
495
.
28.
Xiao
,
G.
,
Zhuo
,
X.
,
Li
,
S.
,
Chen
,
B.
,
Zhao
,
Z.
, and
Wang
,
Y.
,
2023
, “
Study on Surface Creation law of Planar two-Dimensional Ultrasonic-Assisted Abrasive Belt Grinding
,”
J. Mater. Process. Technol.
,
312
, p.
117847
.
29.
Zhang
,
L.
,
Ding
,
C.
,
Wang
,
Z.
, and
Fan
,
C.
,
2022
, “
Multiphase Flow Field Analysis and Experimental Study of Pulsating air jet Polishing
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121014
.
30.
Jin
,
S.
,
Iquebal
,
A.
,
Bukkapatnam
,
S.
,
Gaynor
,
A.
, and
Ding
,
Y.
,
2020
, “
A Gaussian Process Model- Guided Surface Polishing Process in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011003
.
31.
Song
,
K.
,
Xiao
,
G.
,
Chen
,
S.
,
Liu
,
X.
, and
Huang
,
Y.
,
2023
, “
A new Force-Depth Model for Robotic Abrasive Belt Grinding and Confirmation by Grinding of the Inconel 718 Alloy
,”
Rob. Comput.-Integr. Manuf.
,
80
, p.
102483
.
32.
Zhang
,
H.
,
Li
,
L.
,
Zhao
,
J.
,
Zhao
,
J.
, and
Gong
,
Y.
,
2022
, “
Theoretical Investigation and Implementation of Nonlinear Material Removal Depth Strategy for Robot Automatic Grinding Aviation Blade
,”
J. Manuf. Process.
,
74
, pp.
441
455
.
33.
Lv
,
Y.
,
Peng
,
Z.
,
Qu
,
C.
, and
Zhu
,
D.
,
2020
, “
An Adaptive Trajectory Planning Algorithm for Robotic Belt Grinding of Blade Leading and Trailing Edges Based on Material Removal Profile Model
,”
Rob. Comput.-Integr. Manuf.
,
66
, p.
101987
.
34.
Fan
,
C.
,
Liu
,
K.
,
Chen
,
Y.
,
Xue
,
Y.
,
Zhao
,
J.
, and
Khudoley
,
A.
,
2022
, “
A new Modelling Method of Material Removal Profile for Electrorheological Polishing With a Mini Annular Integrated Electrode
,”
J. Mater. Process. Technol.
,
305
, p.
117589
.
35.
Tsai
,
M. J.
,
Huang
,
J. F.
, and
Kao
,
W. L.
,
2009
, “
Robotic Polishing of Precision Molds With Uniform Material Removal Control
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
885
895
.
36.
Lin
,
X.
,
Xin
,
X.
,
Shan
,
X.
,
Yang
,
R.
,
Lei
,
Z.
, and
Sun
,
L.
,
2019
, “
Optimal Parameter Ranges of Material Removal Depth of Abrasive Cloth Wheel Polishing Based on Sensitivity Analysis
,”
Int. J. Adv. Manuf. Technol.
,
105
(
12
), pp.
5165
5179
.
37.
Kakinuma
,
Y.
,
Ogawa
,
S.
, and
Koto
,
K.
,
2022
, “
Robot Polishing Control With an Active end Effector Based on Macro-Micro Mechanism and the Extended Preston's law
,”
CIRP Ann.
,
71
(
1
), pp.
341
344
.
38.
Ge
,
J.
,
Deng
,
Z.
,
Li
,
Z.
,
Liu
,
W.
,
Zhuo
,
R.
,
Wan
,
L.
, and
Nie
,
J.
,
2023
, “
Quantitative Grinding Depth Model for Robotic Weld Seam Grinding Systems
,”
J. Manuf. Process.
,
89
, pp.
397
409
.
39.
Wang
,
C.
,
Wu
,
Y.
,
Liao
,
H.
,
Deng
,
C.
,
Luo
,
J.
, and
Huang
,
Y.
,
2022
, “
Influence of Contact Force and Rubber Wheel Hardness on Material Removal in Abrasive Belt Grinding Investigated by Physical Simulator
,”
Precis. Eng.
,
78
, pp.
70
78
.
40.
Yang
,
M. Y.
, and
Lee
,
H. C.
,
2001
, “
Local Material Removal Mechanism Considering Curvature Effect in the Polishing Process of the Small Aspherical Lens die
,”
J. Mater. Process. Technol.
,
116
(
2
), pp.
298
304
.
41.
Fan
,
C.
,
Zhao
,
J.
,
Zhang
,
L.
,
Wong
,
Y. S.
,
Hong
,
G. S.
, and
Zhou
,
W.
,
2014
, “
Modeling and Analysis of the Material Removal Profile for Free Abrasive Polishing With sub-Aperture pad
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
285
294
.
42.
Meng
,
F.
,
Yu
,
T.
,
Wiercigroch
,
M.
,
Wang
,
Z.
,
Cui
,
Z.
,
Liang
,
Y.
,
Wang
,
Z.
, and
Zhao
,
J.
,
2023
, “
Profile Prediction for Ultrasonic Vibration Polishing of Alumina Ceramics
,”
Int. J. Mech. Sci.
,
252
, p.
108360
.
43.
Wang
,
G.
,
Wang
,
Y.
, and
Xu
,
Z.
,
2009
, “
Modeling and Analysis of the Material Removal Depth for Stone Polishing
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2453
2463
.
44.
Zhang
,
L.
,
Tam
,
H. Y.
,
Yuan
,
C. M.
,
Chen
,
Y. P.
, and
Zhou
,
Z. D.
,
2002
, “
An Investigation of Material Removal in Polishing With Fixed Abrasives
,”
Proc. Inst. Mech. Eng. B
,
216
(
1
), pp.
103
112
.
45.
Zhang
,
J.
,
Liu
,
J.
, and
Yang
,
S.
,
2022
, “
Trajectory Planning of Robot-Assisted Abrasive Cloth Wheel Polishing Blade Based on Flexible Contact
,”
Int. J. Adv. Manuf. Technol.
,
119
(
11–12
), pp.
8211
8225
.
46.
Zhang
,
T.
,
Wang
,
Z.
,
Yu
,
T.
,
Chen
,
H.
,
Dong
,
J.
,
Zhao
,
J.
, and
Wang
,
W.
,
2021
, “
Modeling and Prediction of Generated Local Surface Profile for Ultrasonic Vibration-Assisted Polishing of Optical Glass bk7
,”
J. Mater. Process. Technol.
,
289
, p.
116933
.
47.
Qu
,
S.
,
Wang
,
Z.
,
Zhang
,
C.
,
Ma
,
Z.
,
Zhang
,
T.
,
Chen
,
H.
,
Wang
,
Z.
,
Yu
,
T.
, and
Zhao
,
J.
,
2021
, “
Material Removal Profile Prediction and Experimental Validation for Obliquely Axial Ultrasonic Vibration-Assisted Polishing of k9 Optical Glass
,”
Ceram. Int.
,
47
(
23
), pp.
33106
33119
.
48.
Tam
,
H.
, and
Cheng
,
H.
,
2010
, “
An Investigation of the Effects of the Tool Path on the Removal of Material in Polishing
,”
J. Mater. Process. Technol.
,
210
(
5
), pp.
807
818
.
49.
Ren
,
L.
,
Zhang
,
G.
,
Zhang
,
L.
,
Zhang
,
Z.
, and
Huang
,
Y.
,
2019
, “
Modelling and Investigation of Material Removal Profile for Computer Controlled Ultra-Precision Polishing
,”
Precis. Eng.
,
55
, pp.
144
153
.
50.
Misaka
,
T.
,
Herwan
,
J.
,
Ryabov
,
O.
,
Kano
,
S.
,
Sawada
,
H.
,
Kasashima
,
N.
, and
Furukawa
,
Y.
,
2020
, “
Prediction of Surface Roughness in cnc Turning by Model-Assisted Response Surface Method
,”
Precis. Eng.
,
62
, pp.
196
203
.
51.
Deng
,
J.
,
Zhang
,
Q.
,
Lu
,
J.
,
Yan
,
Q.
,
Pan
,
J.
, and
Chen
,
R.
,
2021
, “
Prediction of the Surface Roughness and Material Removal Rate in Chemical Mechanical Polishing of Single-Crystal sic via a Back-Propagation Neural Network
,”
Precis. Eng.
,
72
, pp.
102
110
.
52.
Çaydaş
,
U.
, and
Ekici
,
S.
,
2012
, “
Support Vector Machines Models for Surface Roughness Prediction in cnc Turning of Aisi 304 Austenitic Stainless Steel
,”
J. Intell. Manuf.
,
23
(
3
), pp.
639
650
.
53.
Chen
,
Y.
,
Sun
,
R.
,
Gao
,
Y.
, and
Leopold
,
J.
,
2017
, “
A Nested-ann Prediction Model for Surface Roughness Considering the Effects of Cutting Forces and Tool Vibrations
,”
Measurement
,
98
, pp.
25
34
.
54.
Tao
,
Z.
,
Yaoyao
,
S.
,
Xiaojun
,
L.
, and
Tianran
,
H.
,
2016
, “
Optimization of Abrasive Flow Polishing Process Parameters for Static Blade Ring Based on Response Surface Methodology
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1085
1093
.
55.
Huai
,
W.
,
Tang
,
H.
,
Shi
,
Y.
, and
Lin
,
X.
,
2017
, “
Prediction of Surface Roughness Ratio of Polishing Blade of Abrasive Cloth Wheel and Optimization of Processing Parameters
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
699
708
.
56.
Zhu
,
C.
,
Gu
,
P.
,
Wu
,
Y.
,
Liu
,
D.
, and
Wang
,
X.
,
2019
, “
Surface Roughness Prediction Model of Sicp/al Composite in Grinding
,”
Int. J. Mech. Sci.
,
155
, pp.
98
109
.
57.
Yang
,
Z.
,
Huang
,
Z.
,
Wang
,
H.
,
Wang
,
L.
, and
Yang
,
H.
,
2022
, “
Process Parameter Optimization Model for Robotic Abrasive Belt Grinding of Aero-Engine Blades
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
16
.
58.
Zhao
,
T.
,
Shi
,
Y.
,
Lin
,
X.
,
Duan
,
J.
,
Sun
,
P.
, and
Zhang
,
J.
,
2014
, “
Surface Roughness Prediction and Parameters Optimization in Grinding and Polishing Process for ibr of Aero-Engine
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
653
663
.
59.
Ge
,
J.
,
Deng
,
Z.
,
Li
,
Z.
,
Liu
,
T.
,
Zhuo
,
R.
, and
Chen
,
X.
,
2023
, “
Adaptive Parameter Optimization Approach for Robotic Grinding of Weld Seam Based on Laser Vision Sensor
,”
Rob. Comput.-Integr. Manuf.
,
82
, p.
102540
.
60.
Preston
,
F. W.
,
1927
, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Glass Technol.
,
11
(
44
), pp.
214
256
.
61.
Arunachalam
,
A. P. S.
,
Idapalapati
,
S.
,
Subbiah
,
S.
, and
Lim
,
Y. W.
,
2020
, “
A Novel Retractable Stiffener-Based Disk-Shaped Active Compliant Polishing Tool
,”
J. Manuf. Process.
,
51
, pp.
83
94
.
62.
Gao
,
Y.
,
Lin
,
X.
, and
Shi
,
Y.
,
2022
, “
Path Generation for Flexible Flank Polishing on Freeform Surfaces With Uniform Over-Cuts
,”
IEEE/ASME Trans. Mechatron.
,
27
(
3
), pp.
1796
1807
.
63.
Roswell
,
A.
,
Xi
,
F. J.
, and
Liu
,
G.
,
2006
, “
Modelling and Analysis of Contact Stress for Automated Polishing
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
424
435
.
64.
Li
,
D.
,
Yang
,
J.
,
Zhao
,
H.
, and
Ding
,
H.
,
2022
, “
Contact Force Plan and Control of Robotic Grinding Towards Ensuring Contour Accuracy of Curved Surfaces
,”
Int. J. Mech. Sci.
,
227
, p.
107449
.
65.
Zhang
,
J.
,
Liu
,
J.
,
Yang
,
S.
,
Ju
,
C.
,
Li
,
J.
, and
Qiao
,
Z.
,
2022
, “
A Model for Material Removal of Robot-Assisted Blade Polishing Using Abrasive Cloth Wheel
,”
Int. J. Adv. Manuf. Technol.
,
123
(
7–8
), pp.
2819
2831
.
66.
Liu
,
Y.
,
Song
,
S.
,
Xiao
,
G.
,
Huang
,
Y.
, and
Zhou
,
K.
,
2023
, “
A High-Precision Prediction Model for Surface Topography of Abrasive Belt Grinding Considering Elastic Contact
,”
Int. J. Adv. Manuf. Technol.
,
125
(
1–2
), pp.
777
792
.
67.
Tian
,
F.
,
Lv
,
C.
,
Li
,
Z.
, and
Liu
,
G.
,
2016
, “
Modeling and Control of Robotic Automatic Polishing for Curved Surfaces
,”
CIRP J. Manuf. Sci. Technol.
,
14
, pp.
55
64
.
68.
Yang
,
Z.
,
Zou
,
P.
,
Zhou
,
L.
,
Wang
,
X.
, and
Usman
,
M. M.
,
2023
, “
Modeling and Experimental Analysis of Surface Topography Generation Mechanism During Ultrasonic Vibration-Assisted Grinding
,”
Precis. Eng.
,
80
, pp.
30
44
.
70.
Kim
,
S.
,
Koh
,
K.
,
Lustig
,
M.
,
Boyd
,
S.
, and
Gorinevsky
,
D.
,
2007
, “
An Interior-Point Method for Large-Scale -Regularized Least Squares
,”
IEEE J. Select. Top. Signal Process.
,
1
(
4
), pp.
606
617
.
71.
Yang
,
J.
, and
Altintas
,
Y.
,
2015
, “
A Generalized on-Line Estimation and Control of Five-Axis Contouring Errors of cnc Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
9
23
.
You do not currently have access to this content.