Abstract

The proposed novel polishing method, hybrid electrochemical magnetorheological (H-ECMR) finishing, combines electrochemical reactions and mechanical abrasion on the workpiece surface to reduce finishing time. Moreover, H-ECMR finishing on the biomaterial surface produces a uniform, thick passive oxide layer to improve corrosion resistance. Herein, the electrolytic solution facilitates the chemical reaction and acts as a carrier medium for carbonyl iron particles (CIPs) in magnetorheological (MR) fluid. The synergic action of the two processes reduces the surface finishing time, which takes longer in the case of the conventional magnetorheological Finishing (MRF) process, as observed experimentally. The developed H-ECMR finishing process employs an electromagnet, maneuvering in situ surface quality variation by altering the magnetic field during finishing. The magnetic shield material (i.e., mu-metal) confines the bottom of the electromagnet core to restrict the magnetic field's leakage and provide a uniform and concentrated magnetic field at the polishing spot. The effectiveness of the H-ECMR process is evaluated based on various surface roughness parameters (i.e., average surface roughness (Ra), skewness (Rsk), and kurtosis (Rku)) and compared with the MRF process. A 96.4% reduction in Ra value is attained in the H-ECMR polishing compared to 49.6% in MRF for identical polishing time. Furthermore, an analytical model is developed to evaluate the final Ra attained from the developed H-ECMR polishing process and agrees well with the experimental results. The impact of different process parameters on surface roughness values is also analyzed. The electrochemical reaction forms a thick and unvarying passive layer on the Ti–6Al–4V surface as layer thickness increases to 78 nm from 8 nm. A case study on the femoral head of the Total Hip Arthroplasty (THA) for enhancement in the surface roughness and biocompatibility is performed through the developed H-ECMR polishing. The Ra value is decreased to 21.3 nm from 326 nm on the femoral head surface through the contour-parallel radial toolpath strategy.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hanief
,
M.
, and
Wani
,
M. F.
,
2016
, “
Effect of Surface Roughness on Wear Rate During Running-In of En31-Steel: Model and Experimental Validation
,”
Mater. Lett.
,
176
, pp.
91
93
.
2.
Wooley
,
P. H.
, and
Schwarz
,
E. M.
,
2004
, “
Aseptic Loosening
,”
Gene Ther.
,
11
(
4
), pp.
402
407
.
3.
Nakae
,
H.
,
Inui
,
R.
,
Hirata
,
Y.
, and
Saito
,
H.
,
1998
, “
Effects of Surface Roughness on Wettability
,”
Acta Mater.
,
46
(
7
), pp.
2313
2318
.
4.
Kumar Singh
,
A.
,
Jha
,
S.
, and
Pandey
,
P. M.
,
2012
, “
Nanofinishing of a Typical 3D Ferromagnetic Workpiece Using Ball end Magnetorheological Finishing Process
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
21
31
.
5.
Nagdeve
,
L.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2019
, “
Development of Inverse Replica Fixture for Nano-Finishing of Knee Joint Using R-MRAFF Process
,”
J. Micromanuf.
,
2
(
1
), pp.
35
41
.
6.
Barman
,
A.
, and
Das
,
M.
,
2018
, “
Soft Computing Techniques to Model and Optimize Magnetic Field-Assisted Finishing Process and Characterization of the Finished Surface
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci
,
232
(
17
), pp.
3156
3168
.
7.
Khan
,
D. A.
, and
Jha
,
S.
,
2019
, “
Selection of Optimum Polishing Fluid Composition for Ball end Magnetorheological Finishing (BEMRF) of Copper
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1093
1103
.
8.
Oshida
,
Y.
, and
Farzin-Nia
,
F.
,
2009
, “Response of Ti–Ni Alloys for Dental Biomaterials to Conditions in the Mouth,”
Shape Memory Alloys for Biomedical Applications
,
T.
Yoneyama
and
S.
Miyazaki
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
101
149
.
9.
Kim
,
W. B.
,
Lee
,
S. H.
, and
Min
,
B. K.
,
2004
, “
Surface Finishing and Evaluation of Three-Dimensional Silicon Microchannel Using Magnetorheological Fluid
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
772
778
.
10.
Seok
,
J.
,
Kim
,
Y. J.
,
Jang
,
K. I.
,
Min
,
B. K.
, and
Lee
,
S. J.
,
2007
, “
A Study on the Fabrication of Curved Surfaces Using Magnetorheological Fluid Finishing
,”
Int. J. Mach. Tools Manuf.
,
47
(
14
), pp.
2077
2090
.
11.
Jung
,
B.
,
Jang
,
K. I.
,
Min
,
B. K.
,
Lee
,
S. J.
, and
Seok
,
J.
,
2009
, “
Magnetorheological Finishing Process for Hard Materials Using Sintered Iron-CNT Compound Abrasives
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
407
418
.
12.
Jang
,
K. I.
,
Seok
,
J.
,
Min
,
B. K.
, and
Jo Lee
,
S.
,
2010
, “
An Electrochemomechanical Polishing Process Using Magnetorheological Fluid
,”
Int. J. Mach. Tools Manuf.
,
50
(
10
), pp.
869
881
.
13.
Singh
,
A. K.
,
Jha
,
S.
, and
Pandey
,
P. M.
,
2011
, “
Design and Development of Nanofinishing Process for 3D Surfaces Using Ball End MR Finishing Tool
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
142
151
.
14.
Jang
,
K. I.
,
Kim
,
D. Y.
,
Maeng
,
S.
,
Lee
,
W.
,
Han
,
J.
,
Seok
,
J.
,
Je
,
T. J.
,
Kang
,
S.
, and
Min
,
B. K.
,
2012
, “
Deburring Microparts Using a Magnetorheological Fluid
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
170
175
.
15.
Sidpara
,
A. M.
, and
Jain
,
V. K.
,
2012
, “
Nanofinishing of Freeform Surfaces of Prosthetic Knee Joint Implant
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
226
(
11
), pp.
1833
1846
.
16.
Kumar
,
S.
,
Jain
,
V. K.
, and
Sidpara
,
A.
,
2015
, “
Nanofinishing of Freeform Surfaces (Knee Joint Implant) by Rotational-Magnetorheological Abrasive Flow Finishing (R-MRAFF) Process
,”
Precis. Eng.
,
42
, pp.
165
178
.
17.
Maan
,
S.
,
Singh
,
G.
, and
Singh
,
A. K.
,
2017
, “
Nano-Surface-Finishing of Permanent Mold Punch Using Magnetorheological Fluid-Based Finishing Processes
,”
Mater. Manuf. Processes
,
32
(
9
), pp.
1004
1010
.
18.
Bedi
,
T. S.
, and
Singh
,
A. K.
,
2018
, “
Development of Magnetorheological Fluid-Based Process for Finishing of Ferromagnetic Cylindrical Workpiece
,”
Mach. Sci. Technol.
,
22
(
1
), pp.
120
146
.
19.
Barman
,
A.
, and
Das
,
M.
,
2019
, “
Toolpath Generation and Finishing of Bio-Titanium Alloy Using Novel Polishing Tool in MFAF Process
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1123
1135
.
20.
Yadav
,
R. D.
, and
Singh
,
A. K.
,
2019
, “
A Novel Magnetorheological Gear Profile Finishing With High Shape Accuracy
,”
Int. J. Mach. Tools Manuf.
,
139
, pp.
75
92
.
21.
Nagdeve
,
L.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2020
, “
Optimization of Process Parameters in Nano-Finishing of Co-Cr-Mo Alloy Knee Joint
,”
Mater. Manuf. Processes
,
35
(
9
), pp.
985
992
.
22.
Zhang
,
J.
,
Wang
,
H.
,
Senthil Kumar
,
A.
, and
Jin
,
M.
,
2020
, “
Experimental and Theoretical Study of Internal Finishing by a Novel Magnetically Driven Polishing Tool
,”
Int. J. Mach. Tools Manuf.
,
153
, p.
103552
.
23.
Abbott
,
A. P.
,
Frisch
,
G.
,
Hartley
,
J.
,
Karim
,
W. O.
, and
Ryder
,
K. S.
,
2015
, “
Anodic Dissolution of Metals in Ionic Liquids
,”
Prog. Nat. Sci. Mater. Int.
,
25
(
6
), pp.
595
602
.
24.
Yang
,
G.
,
Wang
,
B.
,
Tawfiq
,
K.
,
Wei
,
H.
,
Zhou
,
S.
, and
Chen
,
G.
,
2016
, “
Electropolishing of Surfaces: Theory and Applications
,”
Surf. Eng.
,
33
(
2
), pp.
149
166
.
25.
Godlewska
,
E.
,
Mitoraj
,
M.
, and
Leszczynska
,
K.
,
2014
, “
Hot Corrosion of Ti–46Al–8Ta (at%) Intermetallic Alloy
,”
Corros. Sci.
,
78
, pp.
63
70
.
26.
Pottier
,
A.
,
Chanéac
,
C.
,
Tronc
,
E.
,
Mazerolles
,
L.
, and
Jolivet
,
J. P.
,
2001
, “
Synthesis of Brookite TiO2 Nanoparticles by Thermolysis of TiCl4 in Strongly Acidic Aqueous Media
,”
J. Mater. Chem.
,
11
(
4
), pp.
1116
1121
.
27.
Wang
,
Z. L.
,
2020
, “
On the First Principle Theory of Nanogenerators From Maxwell’s Equations
,”
Nano Energy
,
68
, p.
104272
.
28.
Verosub
,
K. L.
, and
Roberts
,
A. P.
,
1995
, “
Environmental Magnetism: Past, Present, and Future
,”
Wiley Online Libr.
,
100
(
B2
), pp.
2175
2192
.
29.
Liu
,
X.
, and
Zhu
,
Z. Q.
,
2013
, “
Comparative Study of Novel Variable Flux Reluctance Machines With Doubly Fed Doubly Salient Machines
,”
IEEE Trans. Magn.
,
49
(
7
), pp.
3838
3841
.
30.
Mori
,
T.
,
Hirota
,
K.
, and
Kawashima
,
Y.
,
2003
, “
Clarification of Magnetic Abrasive Finishing Mechanism
,”
J. Mater. Process. Technol.
,
143–144
, pp.
682
686
.
31.
Rajput
,
A. S.
,
Das
,
M.
, and
Kapil
,
S.
,
2022
, “
A Comprehensive Review of Magnetorheological Fluid Assisted Finishing Processes
,”
Mach. Sci. Technol.
,
26
(
3
), pp.
339
376
.
You do not currently have access to this content.