Abstract

One of the widely used metal additive manufacturing processes, named Selective laser melting (SLM), can facilitate the printing of novel metal matrix nanocomposites through the fusion of metallic powders with nanoparticles. The current study proposes a novel numerical model to simulate microstructure formation considering local nanoparticle distribution during the SLM process. The proposed model formulates a three-dimensional computational fluid dynamics (CFD) model with Lagrangian particle tracking to simulate a single-track, single-layer SLM process of aluminum alloy reinforced with titanium diboride (chemical formula: TiB2) nanoparticles in ANSYS FLUENT. A very low weight fraction (0.0009%) of nanoparticles was considered due to the computational limitations of the software package. The temperature distribution and particle distribution results were first calculated by the 3D CFD model. Then, the results were one-way coupled to a 2D Cellular Automata (CA) model to predict the microstructure evolution using matlab. The coupled CFD-CA model and Lagrangian particle tracking were separately validated in this study. The results showed that the nanoparticles migrate within the recirculation zones formed by both Marangoni and natural convection in the fluid of the molten pool. The microstructure predicted by this model showed that the introduction of the nanoparticles increased bulk nucleation during solidification. The growth of large columnar grains is interrupted by the formation of randomly oriented small equiaxed grains. The average grain diameter decreased by 40% when nanoparticles were present compared to microstructures without nanoparticles.

References

1.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
, et al
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
2.
Xiao
,
Y. K.
,
Bian
,
Z. Y.
,
Wu
,
Y.
,
Ji
,
G.
,
Li
,
Y. Q.
,
Li
,
M. J.
,
Lian
,
Q.
,
Chen
,
Z.
,
Addad
,
A.
, and
Wang
,
H. W.
,
2019
, “
Effect of Nano-TiB2 Particles on the Anisotropy in an AlSi10Mg Alloy Processed by Selective Laser Melting
,”
J. Alloys Compd.
,
798
, pp.
644
655
.
3.
Gu
,
D.
,
Wang
,
H.
,
Dai
,
D.
,
Yuan
,
P.
,
Meiners
,
W.
, and
Poprawe
,
R.
,
2015
, “
Rapid Fabrication of Al-Based Bulk-Form Nanocomposites With Novel Reinforcement and Enhanced Performance by Selective Laser Melting
,”
Scr. Mater.
,
96
(
C
), pp.
25
28
.
4.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
48
(
3
), p.
035303
.
5.
Dai
,
D.
, and
Gu
,
D.
, “
Influence of Thermodynamics Within Molten Pool on Migration and Distribution State of Reinforcement During Selective Laser Melting of AlN/AlSi10Mg Composites
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
14
24
.
6.
AlMangour
,
B.
,
Grzesiak
,
D.
,
Cheng
,
J.
, and
Ertas
,
Y.
,
2018
, “
Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods
,”
J. Mater. Process. Technol.
,
257
, pp.
288
301
.
7.
Rahman
,
K. M.
,
Ruhul Amin
,
M.
, and
Mian
,
A.
,
2019
, “
A Numerical Study of Diffusion of Nanoparticles in a Viscous Medium During Solidification
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011013
.
8.
Mishra
,
A. K.
, and
Kumar
,
A.
,
2019
, “
Numerical and Experimental Analysis of the Effect of Volumetric Energy Absorption in Powder Layer on Thermal-Fluidic Transport in Selective Laser Melting of Ti6Al4V
,”
Opt. Laser Technol.
,
111
, pp.
227
239
.
9.
Gu
,
D.
, and
Yuan
,
P.
,
2015
, “
Thermal Evolution Behavior and Fluid Dynamics During Laser Additive Manufacturing of Al-Based Nanocomposites: Underlying Role of Reinforcement Weight Fraction
,”
J. Appl. Phys.
,
118
(
23
), p.
233109
.
10.
Mukherjee
,
T.
,
Wei
,
H. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing—Part I: Modeling of Powder Bed Fusion
,”
Comput. Mater. Sci.
,
150
, pp.
304
313
.
11.
Zhang
,
Y.
, and
Zhang
,
J.
,
2019
, “
Modeling of Solidification Microstructure Evolution in Laser Powder Bed Fusion Fabricated 316L Stainless Steel Using Combined Computational Fluid Dynamics and Cellular Automata
,”
Addit. Manuf.
,
28
, pp.
750
765
.
12.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.
13.
Tan
,
J. H. K.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2020
, “
Microstructure Modelling for Metallic Additive Manufacturing: A Review
,”
Virtual Phys. Prototyp.
,
15
(
1
), pp.
87
105
.
14.
Mishra
,
S.
, and
DebRoy
,
T.
,
2004
, “
Grain Topology in Ti–6Al–4V Welds—Monte Carlo Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
37
(
15
), pp.
2191
2196
.
15.
Gandin
,
C.-A.
, and
Rappaz
,
M.
,
1994
, “
A Coupled Finite Element-Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2233
2246
.
16.
Gandin
,
C.-A.
, and
Rappaz
,
M.
,
1997
, “
A 3D Cellular Automaton Algorithm for the Prediction of Dendritic Grain Growth
,”
Acta Mater.
,
45
(
5
), pp.
2187
2195
.
17.
Zinovieva
,
O.
,
Zinoviev
,
A.
, and
Ploshikhin
,
V.
,
2018
, “
Three-Dimensional Modeling of the Microstructure Evolution During Metal Additive Manufacturing
,”
Comput. Mater. Sci.
,
141
, pp.
207
220
.
18.
Baumard
,
A.
,
Ayrault
,
D.
,
Fandeur
,
O.
,
Bordreuil
,
C.
, and
Deschaux-Beaume
,
F.
,
2021
, “
Numerical Prediction of Grain Structure Formation During Laser Powder Bed Fusion of 316 L Stainless Steel
,”
Mater. Des.
,
199
, p.
109434
.
19.
Mohebbi
,
M. S.
, and
Ploshikhin
,
V.
,
2020
, “
Implementation of Nucleation in Cellular Automaton Simulation of Microstructural Evolution During Additive Manufacturing of Al Alloys
,”
Addit. Manuf.
,
36
, p.
101726
.
20.
Xi
,
L.
,
Gu
,
D.
,
Guo
,
S.
,
Wang
,
R.
,
Ding
,
K.
, and
Prashanth
,
K. G.
,
2020
, “
Grain Refinement in Laser Manufactured Al-Based Composites With TiB2 Ceramic
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
2611
2622
.
21.
Yang
,
M.
,
Wang
,
L.
, and
Yan
,
W.
,
2021
, “
Phase-Field Modeling of Grain Evolutions in Additive Manufacturing From Nucleation, Growth, to Coarsening
,”
Comput. Mater.
,
7
(
1
), p.
56
.
22.
Yang
,
M.
,
Wang
,
L.
, and
Yan
,
W.
,
2021
, “
Phase-Field Modeling of Grain Evolution in Additive Manufacturing With Addition of Reinforcing Particles
,”
Addit. Manuf.
,
47
, p.
102286
.
23.
Alam
,
T.
,
2022
,
M.S. thesis
,
Montana State University-Bozeman, College of Engineering
,
Bozeman, Montana
.
24.
Documentation, A. F.
,
2011
, “
ANSYS Fluent Theory Guide
,” Ansys Inc., USA 15317, pp.
724
746
.
25.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Sawston, UK
.
26.
Munro
,
R.
,
2000
, “
Material Properties of Titanium Diboride
,”
J. Res. Natl. Inst. Stand. Technol.
,
105
, p.
709
.
27.
Pei
,
W.
,
Zhengying
,
W.
,
Zhen
,
C.
,
Junfeng
,
L.
,
Shuzhe
,
Z.
, and
Jun
,
D.
,
2017
, “
Numerical Simulation and Parametric Analysis of Selective Laser Melting Process of AlSi10Mg Powder
,”
Appl. Phys. A
,
123
(
8
), p.
540
.
28.
Serraj
,
R.
,
1986
,
Theory and Applications of Cellular Automata
,
World Scientific Publishing Company
,
Singapore
.
29.
Zhang
,
J.
,
Li
,
W.
,
Yan
,
L.
, and
Liou
,
F.
,
2018
, “
A Two-Dimensional Simulation of Grain Structure Growth Within the Substrate and the Fusion Zone During Direct Metal Deposition
,”
C. R. Méc.
,
346
(
11
), pp.
1072
1086
.
30.
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2007
, “
Interaction Between Single Grain Solidification and Macrosegregation: Application of a Cellular Automaton—Finite Element Model
,”
J. Cryst. Growth
,
303
(
1
), pp.
58
68
.
31.
Akram
,
J.
,
Chalavadi
,
P.
,
Pal
,
D.
, and
Stucker
,
B.
,
2018
, “
Understanding Grain Evolution in Additive Manufacturing Through Modeling
,”
Addit. Manuf.
,
21
, pp.
255
268
.
32.
Ao
,
X.
,
Xia
,
H.
,
Liu
,
J.
, and
He
,
Q.
,
2020
, “
Simulations of Microstructure Coupling with Moving Molten Pool by Selective Laser Melting Using a Cellular Automaton
,”
Mater. Des.
,
185
, p.
108230
.
33.
Gerstgrasser
,
M.
,
Jakob
,
R.
,
Pandya
,
K. S.
,
Stirnimann
,
J.
, and
Wegener
,
K.
,
2021
, “
CA Single Track Microstructure Simulation of Nickel Base Alloy CM247LC and Stainless Steel S316L, Including Experimental Validation of S316L
,”
Mater. Des.
,
199
, p.
109395
.
34.
Ansari Dezfoli
,
A. R.
,
Lo
,
Y.-L.
, and
Raza
,
M. M.
,
2021
, “
Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach
,”
Materials
,
14
(
18
), p.
5202
.
35.
Tang
,
M.
,
Pistorius
,
P. C.
,
Narra
,
S.
, and
Beuth
,
J. L.
,
2016
, “
Rapid Solidification: Selective Laser Melting of AlSi10Mg
,”
JOM
,
68
(
3
), pp.
960
966
.
36.
Matlab
,
S.
,
2012
,
Matlab
,
The MathWorks
,
Natick, MA
.
37.
E04 Committee
,
1996
, “
E112: Standard Test Methods for Determining Average Grain Size
,” ASTM International, West Conshocken, 112, pp.
4
20
.
38.
Bagheri
,
G. H.
,
Salmanzadeh
,
M.
,
Golkarfard
,
V.
, and
Ahmadi
,
G.
,
2012
, “
Simulation of Solid Particles Behavior in a Heated Cavity at High Rayleigh Numbers
,”
Aerosol Sci. Technol.
,
46
(
12
), pp.
1382
1391
.
39.
Köhnen
,
P.
,
Létang
,
M.
,
Voshage
,
M.
,
Schleifenbaum
,
J. H.
, and
Haase
,
C.
,
2019
, “
Understanding the Process-Microstructure Correlations for Tailoring the Mechanical Properties of L-PBF Produced Austenitic Advanced High Strength Steel
,”
Addit. Manuf.
,
30
, p.
100914
.
You do not currently have access to this content.