Abstract

This paper presents formulations for hybrid casting and additive manufacturing (AM) in the density-based topology optimization. A location-based Heaviside function is introduced to represent the parting surface. The optimized part on two sides of the parting surface can be fabricated with casting, additive manufacturing, or both. Through the location-based Heaviside function and density gradient, two global constraints are formulated to remove undercuts and overhangs for casting and AM, respectively, inside the design domain. Since density gradient vanishes on the design domain boundary, two extra density-based global constraints are developed to control the overhangs and undercuts outside the design domain. Due to the smoothed parameterization of the parting surface, we are able to optimize the part and partition surface (including location and parting direction) simultaneously for hybrid casting and additive manufacturing. The proposed formulations for hybrid manufacturing processes are validated through 2D and 3D numerical examples. The proposed approach further enlarges the design space with manufacturing constraints, and has the potential to be used in the design for hybrid and multi-component manufacturing.

References

1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
,
New York
.
2.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
.
3.
Poulsen
,
T. A.
,
2003
, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Meth. Eng.
,
57
(
6
), pp.
741
760
.
4.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Meth. Eng.
,
61
(
2
), pp.
238
254
.
5.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
, pp.
767
784
.
6.
Qian
,
X.
, and
Sigmund
,
O.
,
2012
, “
Topological Design of Electromechanical Actuators With Robustness Toward Over-and Under-Etching
,”
Comput. Meth. Appl. Mech. Eng.
,
253
, pp.
237
251
.
7.
Zhou
,
M.
,
Lazarov
,
B. S.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2015
, “
Minimum Length Scale in Topology Optimization by Geometric Constraints
,”
Comput. Meth. Appl. Mech. Eng.
,
293
, pp.
266
282
.
8.
Guest
,
J. K.
,
2009
, “
Imposing Maximum Length Scale in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
5
), pp.
463
473
.
9.
Wang
,
Y.
,
Zhang
,
L.
, and
Wang
,
M. Y.
,
2016
, “
Length Scale Control for Structural Optimization by Level Sets
,”
Comput. Meth. Appl. Mech. Eng.
,
305
, pp.
891
909
.
10.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2016
, “
Thickness Control in Structural Optimization Via a Level Set Method
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1349
1382
.
11.
Zhou
,
M.
,
Fleury
,
R.
,
Shyy
,
Y.
,
Thomas
,
H.
, and
Brennan
,
J.
,
2002
, “
Progress in Topology Optimization With Manufacturing Constraints
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5614
.
12.
Xia
,
Q.
,
Shi
,
T.
,
Wang
,
M. Y.
, and
Liu
,
S.
,
2010
, “
A Level Set Based Method for the Optimization of Cast Part
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
735
747
.
13.
Xia
,
Q.
,
Shi
,
T.
,
Wang
,
M. Y.
, and
Liu
,
S.
,
2011
, “
Simultaneous Optimization of Cast Part and Parting Direction Using Level Set Method
,”
Struct. Multidiscipl. Optim.
,
44
(
6
), pp.
751
759
.
14.
Gersborg
,
A. R.
, and
Andreasen
,
C. S.
,
2011
, “
An Explicit Parameterization for Casting Constraints in Gradient Driven Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
44
(
6
), pp.
875
881
.
15.
Sato
,
Y.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2017
, “
Manufacturability Evaluation for Molded Parts Using Fictitious Physical Models, and Its Application in Topology Optimization
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
1391
1409
.
16.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Fan
,
H.
,
2018
, “
Topology Optimization Design of Cast Parts Based on Virtual Temperature Method
,”
Computer-Aided Design
,
94
, pp.
28
40
.
17.
Zhou
,
H.
,
Zhang
,
J.
,
Zhou
,
Y.
, and
Saitou
,
K.
,
2019
, “
Multi-Component Topology Optimization for Die Casting (MTO-D)
,”
Struct. Multidiscip. Optim.
,
60
, pp.
2265
2279
.
18.
Guest
,
J. K.
, and
Zhu
,
M.
,
2012
, “
Casting and Milling Restrictions in Topology Optimization Via Projection-Based Algorithms
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
913
920
.
19.
Li
,
H.
,
Li
,
P.
,
Gao
,
L.
,
Zhang
,
L.
, and
Wu
,
T.
,
2015
, “
A Level Set Method for Topological Shape Optimization of 3D Structures With Extrusion Constraints
,”
Comput. Meth. Appl. Mech. Eng.
,
283
, pp.
615
635
.
20.
Mirzendehdel
,
H. Y.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2020
, “
Topology Optimization With Accessibility Constraint for Multi–Axis Machining
,”
Computer-Aided Design
,
122
, p.
102825
.
21.
Lee
,
H. Y.
,
Zhu
,
M.
, and
Guest
,
J. K.
,
2022
, “
Topology Optimization Considering Multi-axis Machining Constraints Using Projection Methods
,”
Comput. Meth. Appl. Mech. Eng.
,
390
, p.
114464
.
22.
Gasick
,
J.
, and
Qian
,
X.
,
2021
, “
Simultaneous Topology and Machine Orientation Optimization for Multiaxis Machining
,”
Int. J. Numer. Meth. Eng.
,
122
, pp.
7504
7535
.
23.
Deng
,
H.
,
Vulimiri
,
P. S.
, and
To
,
A. C.
,
2022
, “
CAD-Integrated Topology Optimization Method With Dynamic Extrusion Feature Evolution for Multi-axis Machining
,”
Comput. Meth. Appl. Mech. Eng.
,
390
, p.
114456
.
24.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
348
362
.
25.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Topology Optimization for Additive Manufacturing: Considering Maximum Overhang Constraint
,”
15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 16–20
, pp.
20
36
.
26.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1157
1172
.
27.
Langelaar
,
M.
,
2016
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscipl. Optim.
,
55
, pp.
871
883
.
28.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
60
70
.
29.
Qian
,
X.
,
2017
, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Meth. Eng.
,
111
(
3
), pp.
247
272
.
30.
Wang
,
C.
,
Qian
,
X.
,
Gerstler
,
W. D.
, and
Shubrooks
,
J.
,
2019
, “
Boundary Slope Control in Topology Optimization for Additive Manufacturing: for Self-Support and Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091001
.
31.
Wang
,
C.
, and
Qian
,
X.
,
2020
, “
Simultaneous Optimization of Build Orientation and Topology for Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101246
.
32.
Zhang
,
K.
,
Cheng
,
G.
, and
Xu
,
L.
,
2019
, “
Topology Optimization Considering Overhang Constraint in Additive Manufacturing
,”
Comput. Struct.
,
212
, pp.
86
100
.
33.
Zhang
,
K.
, and
Cheng
,
G.
,
2020
, “
Three-Dimensional High Resolution Topology Optimization Considering Additive Manufacturing Constraints
,”
Addit. Manuf.
,
35
, p.
101224
.
34.
Wang
,
C.
,
2022
, “
Simultaneous Optimization of Build Orientation and Topology for Self-Supported Enclosed Voids in Additive Manufacturing
,”
Comput. Meth. Appl. Mech. Eng.
,
388
, p.
114227
.
35.
Langelaar
,
M.
,
2018
, “
Combined Optimization of Part Topology, Support Structure Layout and Build Orientation for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1985
2004
.
36.
Mezzadri
,
F.
,
Bouriakov
,
V.
, and
Qian
,
X.
,
2018
, “
Topology Optimization of Self-Supporting Support Structures for Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
666
682
.
37.
Kuo
,
Y.
,
Cheng
,
C.
,
Lin
,
Y.
, and
San
,
C.
,
2018
, “
Support Structure Design in Additive Manufacturing Based on Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
183
195
.
38.
Wang
,
C.
, and
Qian
,
X.
,
2023
, “
Simultaneous Optimization of Part and Support for Heat Dissipation in Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
66
(
1
), p.
3
.
39.
Wang
,
C.
, and
Qian
,
X.
,
2020
, “
Simultaneous Optimization of Part and Support for Heat Dissipation in Additive Manufacturing
,”
40th Computers and Information in Engineering Conference (CIE) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 9, p. V009T09A018.
40.
Allaire
,
G.
, and
Bogosel
,
B.
,
2018
, “
Optimizing Supports for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
58
(
6
), pp.
2493
2515
.
41.
Cheng
,
L.
,
Liang
,
X.
,
Bai
,
J.
,
Chen
,
Q.
,
Lemon
,
J.
, and
To
,
A.
,
2019
, “
On Utilizing Topology Optimization to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed Metal Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
290
304
.
42.
Zhou
,
M.
,
Liu
,
Y.
, and
Lin
,
Z.
,
2019
, “
Topology Optimization of Thermal Conductive Support Structures for Laser Additive Manufacturing
,”
Comput. Meth. Appl. Mech. Eng.
,
353
, pp.
24
43
.
43.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manuf. Mater. Process.
,
2
(
4
), p.
64
.
44.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization – Theory, Methods and Applications
, 2nd ed.,
Springer Verlag
,
Berlin, Germany
.
45.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
46.
Wang
,
C.
, and
Qian
,
X.
,
2018
, “
Heaviside Projection-Based Aggregation in Stress-Constrained Topology Optimization
,”
Int. J. Numer. Meth. Eng.
,
115
(
7
), pp.
849
871
.
47.
Wang
,
C.
, and
Qian
,
X.
,
2020
, “
A Density Gradient Approach to Topology Optimization Under Design-Dependent Boundary Loading
,”
J. Comput. Phys.
,
411
, p.
109398
.
48.
Haber
,
R. B.
,
Jog
,
C. S.
, and
Bendsøe
,
M. P.
,
1996
, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Optim.
,
11
(
1–2
), pp.
1
12
.
49.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2015
, “
Topology Optimization of Coated Structures and Material Interface Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
290
, pp.
524
541
.
50.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2016
, “
Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load
,”
Engineering
,
2
(
2
), pp.
250
257
.
51.
Clausen
,
A.
,
Andreassen
,
E.
, and
Sigmund
,
O.
,
2017
, “
Topology Optimization of 3D Shell Structures With Porous Infill
,”
Acta Mech. Sin.
,
33
, pp.
778
791
.
52.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
53.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Meth. Eng.
,
86
(
6
), pp.
765
781
.
54.
Xu
,
S.
,
Cai
,
Y.
, and
Cheng
,
G.
,
2010
, “
Volume Preserving Nonlinear Density Filter Based on Heaviside Functions
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
495
505
.
55.
Eslami
,
M. R.
,
Hetnarski
,
R. B.
,
Ignaczak
,
J.
,
Noda
,
N.
,
Sumi
,
N.
, and
Tanigawa
,
Y.
,
2013
,
Theory of Elasticity and Thermal Stresses
, Vol.
197
,
Springer
,
Dordrecht
.
56.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
192
202
.
57.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
22
(
2
), pp.
116
124
.
58.
Bruyneel
,
M.
, and
Duysinx
,
P.
,
2005
, “
Note on Topology Optimization of Continuum Structures Including Self-Weight
,”
Struct. Multidiscipl. Optim.
,
29
(
4
), pp.
245
256
.
59.
Zhang
,
W.
,
Yang
,
J.
,
Xu
,
Y.
, and
Gao
,
T.
,
2014
, “
Topology Optimization of Thermoelastic Structures: Mean Compliance Minimization or Elastic Strain Energy Minimization
,”
Struct. Multidiscipl. Optim.
,
49
(
3
), pp.
417
429
.
60.
Logg
,
A.
,
Mardal
,
K.
, and
Wells
,
G.
,
2012
,
Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book
, Vol.
84
,
Springer Science & Business Media
,
Berlin
.
61.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes – A New Method for Structural Optimization
,”
Int. J. Numer. Meth. Eng.
,
24
(
2
), pp.
359
373
.
62.
Holmberg
,
E.
,
Thore
,
C. J.
, and
Klarbring
,
A.
,
2015
, “
Worst-Case Topology Optimization of Self-Weight Loaded Structures Using Semi-Definite Programming
,”
Struct. Multidiscip. Optim.
,
52
, pp.
915
928
.
63.
Kumar
,
P.
,
2022
, “
Topology Optimization of Stiff Structures Under Self-Weight for Given Volume Using a Smooth Heaviside Function
,”
Struct. Multidiscip. Optim.
,
64
(
4
), p.
128
.
You do not currently have access to this content.