Abstract

Sensorial acquired process data combined with machine learning (ML) algorithms are fundamental for mastering the challenges of modern production systems, however, their potential is rarely exploited in real-world manufacturing applications. In this context, the literature presents systematic procedure models to generate knowledge from data, such as the cross industry standard process for data mining (CRISP-DM) model, which is used as a standard methodology for conducting data mining in industrial applications. However, these models do not take into account boundary conditions of manufacturing processes as well as the characteristics of the sensorial acquired data within these systems to generate knowledge. Therefore, this work presents a novel procedure model for knowledge discovery in time series and image data in engineering applications (KDT-EA). A holistic view of knowledge discovery in manufacturing processes becomes feasible with a strong focus on data acquisition, data preprocessing, and data transformation to generate reliable input data for ML models estimating the actual state of manufacturing processes. The process model supports operators in industry setting up a suitable measurement chain acquiring high-quality data and selecting preparation techniques depending on superimposed disturbances. Furthermore, it suggests data transformation techniques reducing the amount of data without losing informational value and establishing a basis for product-related inline monitoring. To quantify the benefits of KDT-EA and the impact of its phase on the quality of the generated knowledge, the novel procedure model is applied to an application in the field of inline wear detection on a sheet metal forming tool.

References

1.
European Commission
. “
Factories of the Future—Multi-Annual Roadmap for the Contractual PPP Under Horizon 2020
.” https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf.
2.
Gronostajski
,
J.
,
Matuszak
,
A.
,
Niechajowicz
,
A.
, and
Zimniak
,
Z.
,
2004
, “
The System for Sheet Metal Forming Design of Complex Parts
,”
J. Mater. Process. Technol.
,
157–158
, pp.
502
507
.
3.
Merklein
,
M.
,
Koch
,
J.
,
Schneider
,
T.
,
Opel
,
S.
, and
Vierzigmann
,
U.
,
2010
, “
Manufacturing of Complex Functional Components With Variants by Using a New Metal Forming Process—Sheet-Bulk Metal Forming
,”
Int. J. Mater. Form.
,
3
(
1
), pp.
347
350
.
4.
Fischer
,
P.
,
Heingärtner
,
J.
,
Renkci
,
Y.
, and
Hora
,
P.
,
2018
, “
Experiences With Inline Feedback Control and Data Acquisition in Deep Drawing
,”
Procedia Manuf.
,
15
, pp.
949
954
.
5.
Jin
,
J.
, and
Shi
,
J.
,
2000
, “
Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments
,”
ASME J. Manuf. Sci. Eng.
,
122
(
2
), pp.
360
369
.
6.
Traub
,
T.
,
Gregório
,
M. G.
, and
Groche
,
P.
,
2018
, “
A Framework Illustrating Decision-Making in Operator Assistance Systems and Its Application to a Roll Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9
), pp.
3701
3710
.
7.
Ginzburg
,
V. B.
,
2009
,
Flat-Rolled Steel Processes: Advanced Technologies
,
CRC Press
,
Boca Raton, FL
.
8.
Müllerschön
,
H.
,
Roux
,
W.
,
Lorenz
,
D.
, and
Roll
,
K.
,
2008
, “
Stochastic Analysis of Uncertainties for Metal Forming Processes With LS-OPT
,”
Proceedings of the NUMISHEET
,
Interlaken, Switzerland
,
Sept. 1–5
, pp.
819
828
.
9.
Kubik
,
C.
,
Knauer
,
S. M.
, and
Groche
,
P.
,
2021
, “
Smart Sheet Metal Forming: Importance of Data Acquisition, Preprocessing and Transformation on the Performance of a Multiclass Support Vector Machine for Predicting Wear States During Blanking
,”
J. Intell. Manuf.
,
33
(
1
), pp.
259
282
.
10.
Groche
,
P.
,
Hoppe
,
F.
, and
Sinz
,
J.
,
2017
, “
Stiffness of Multipoint Servo Presses: Mechanics Vs. Control
,”
CIRP Ann.
,
66
(
1
), pp.
373
376
.
11.
Meyer
,
G.
,
Brünig
,
B.
, and
Nyhuis
,
P.
,
2015
, “
Employee Competences in Manufacturing Companies—An Expert Survey
,”
J. Manage. Dev.
,
34
(
8
), pp.
1004
1018
.
12.
Charles
,
R. L.
,
Johnson
,
T. L.
, and
Fletcher
,
S. R.
,
2015
, “
The Use of Job Aids for Visual Inspection in Manufacturing and Maintenance
,”
Procedia CIRP
,
38
, pp.
90
93
.
13.
Elkins
,
K. L.
, and
Sturges
,
R. H.
,
1996
, “
In-Process Angle Measurement and Control for Flexible Sheet Metal Manufacture
,”
J. Intell. Manuf.
,
7
(
3
), pp.
177
187
.
14.
Hirsch
,
M.
,
Demmel
,
P.
,
Golle
,
R.
, and
Hoffmann
,
H.
,
2011
, “
Light Metal in High-Speed Stamping Tools
,”
Key Eng. Mater.
,
473
, pp.
259
266
.
15.
Volk
,
W.
,
Groche
,
P.
,
Brosius
,
A.
,
Ghiotti
,
A.
,
Kinsey
,
B. L.
,
Liewald
,
M.
,
Madej
,
L.
,
Min
,
J.
, and
Yanagimoto
,
J.
,
2019
, “
Models and Modelling for Process Limits in Metal Forming
,”
CIRP Ann.
,
68
(
2
), pp.
775
798
.
16.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
.
17.
Krüger
,
J.
,
Fleischer
,
J.
,
Franke
,
J.
, and
Groche
,
P.
,
2019
, “
KI in der Produktion—Künstliche Intelligenz erschließen für Unternehmen,” Position Paper “AI in Production
,” Wissenschaftliche Gesellschaft für Produktionstechnik WGP e.V. https://wgp.de/wp-content/uploads/WGP-Standpunkt_KI-final_20190906-2.pdf.
18.
Windmann
,
S.
,
Maier
,
A.
,
Niggemann
,
O.
,
Frey
,
C.
,
Bernardi
,
A.
,
Gu
,
Y.
,
Pfrommer
,
H.
,
Steckel
,
T.
,
Krüger
,
M.
, and
Kraus
,
R.
,
2015
, “
Big Data Analysis of Manufacturing Processes
,”
J. Phys.: Conf. Ser.
,
659
(
1
), p.
12055
.
19.
Fayyad
,
U.
,
Piatetsky-Shapiro
,
G.
, and
Smyth
,
P.
,
1996
, “
The KDD Process for Extracting Useful Knowledge From Volumes of Data
,”
Commun. ACM
,
39
(
11
), pp.
27
34
.
20.
Chapman
,
P.
,
Clinton
,
J.
,
Kerber
,
R.
,
Khabaza
,
T.
,
Reinartz
,
T.
,
Shearer
,
C.
, and
Wirth
,
R.
,
2000
, “
CRISP-DM 1.0—Step-by-Step Data Mining Guide
,”
SPSS Inc
,
9
(
13
), pp.
1
73
.
21.
Huber
,
S.
,
Wiemer
,
H.
,
Schneider
,
D.
, and
Ihlenfeldt
,
S.
,
2019
, “
DMME: Data Mining Methodology for Engineering Applications—A Holistic Extension to the CRISP-DM Model
,”
Procedia CIRP
,
79
, pp.
403
408
.
22.
Cheng
,
Y.
,
Chen
,
K.
,
Sun
,
H.
,
Zhang
,
Y.
, and
Tao
,
F.
,
2018
, “
Data and Knowledge Mining With Big Data Towards Smart Production
,”
J. Ind. Inf. Integr.
,
97
(
1
), pp.
1209
1221
.
23.
Tsai
,
C.-W.
,
Lai
,
C.-F.
,
Chao
,
H.-C.
, and
Vasilakos
,
A. V.
,
2015
, “
Big Data Analytics: A Survey
,”
J. Big Data
,
2
(
1
), pp.
1
32
.
24.
Martínez-Arellano
,
G.
,
Terrazas
,
G.
, and
Ratchev
,
S.
,
2019
, “
Tool Wear Classification Using Time Series Imaging and Deep Learning
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9
), pp.
3647
3662
.
25.
Piatetsky-Shapiro
,
G.
,
2007
, “
Data Mining and Knowledge Discovery 1996 to 2005: Overcoming the Hype and Moving From “University” to “Business” and “Analytics”
,”
Data Min. Knowl. Discovery
,
15
(
1
), pp.
99
105
.
26.
Cabena
,
P.
,
Hadjinian
,
P.
,
Stadler
,
R.
,
Verhees
,
J.
, and
Zanasi
,
A.
,
1998
,
Discovering Data Mining—From Concept to Implementation
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Hirji
,
K. K.
,
2001
, “
Exploring Data Mining Implementation
,”
Commun. ACM
,
44
(
7
), pp.
87
93
.
28.
Klemettinen
,
M.
,
Mannila
,
H.
, and
Toivonen
,
H.
,
1997
, “
A Data Mining Methodology and Its Application to Semi-automatic Knowledge Acquisition
,”
Proceedings of the Eighth International Conference on Database and Expert Systems Applications
,
Toulouse, France
,
Sept. 1–5
, pp.
670
677
.
29.
Mounier
,
A.
,
Boissier
,
O.
, and
Jacquenet
,
F.
,
2003
, “
How to Learn to Interact?
,”
Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems
,
Melbourne, Australia
,
July 14–18
, p.
1072
.
30.
Vaschetto
,
M.
,
Weissbrod
,
T.
,
Bodle
,
D.
, and
Güner
,
O.
,
2003
, “
Enabling High-Throughput Discovery
,”
Curr. Opin. Drug Discovery Dev.
,
6
(
3
), pp.
377
383
.
31.
Hammad
,
A.
, and
AbouRizk
,
S.
,
2014
, “
Knowledge Discovery in Data: A Case Study
,”
J. Comput. Commun.
,
2
(
5
), pp.
1
28
.
32.
Anand
,
S. S.
,
Patrick
,
A. R.
,
Hughes
,
J. G.
, and
Bell
,
D. A.
,
1998
, “
A Data Mining Methodology for Cross-Sales
,”
Knowl. Based Syst.
,
10
(
7
), pp.
449
461
.
33.
Büchner
,
A. G.
,
Mulvenna
,
M.
,
Anand
,
S. S.
, and
Hughes
,
J.
,
1996
, “
An Internet-Enabled Knowledge Discovery Process
,”
Proceedings of the Nineth International Database Conference on Heterogeneous and Internet Databases
,
Hong Kong, China
,
July 31
, pp.
13
27
.
34.
Buchheit
,
R. B.
,
Garrett
,
J. H.
,
Lee
,
S. R.
, and
Brahme
,
R.
,
2000
, “
A Knowledge Discovery Framework for Civil Infrastructure: A Case Study of the Intelligent Workplace
,”
Eng. Comput.
,
16
(
3–4
), pp.
264
274
.
35.
Jensen
,
S.
,
2001
, “
Mining Medical Data for Predictive and Sequential Patterns
,”
Proceedings of the Fifth European Conference on Principles and Practice of Knowledge Discovery in Databases
,
Freiburg, Germany
,
Sept. 3–5
, pp.
1
10
.
36.
Ivancakova
,
J.
,
Babic
,
F.
, and
Butka
,
P.
,
2018
, “
Comparison of Different Machine Learning Methods on Wisconsin Dataset
,”
Proceedings of the 16th World Symposium on Applied Machine Intelligence and Informatics
,
Kosice, Slovakia
,
Feb. 7–8
, pp.
173
178
.
37.
Butler
,
S.
,
2002
, “
An Investigation Into the Relative Abilities of Three Alternative Data Mining Methods to Derive Information of Business Value From Retail Store-Based Transaction Data
,”
Ph.D. thesis
,
School of Computing and Mathematics, Deakin University
,
Geelong, Australia
.
38.
Silva
,
E. M.
,
Do Prado
,
H. A.
, and
Edilson
,
F.
,
2002
, “
Text Mining: Crossing the Chasm Between the Academy and the Industry
,”
WIT Trans. Inf. Commun. Technol.
,
28
, pp.
351
361
.
39.
Schnell
,
J.
,
Nentwich
,
C.
,
Endres
,
F.
,
Kollenda
,
A.
,
Distel
,
F.
,
Knoche
,
T.
, and
Reinhart
,
G.
,
2019
, “
Data Mining in Lithium-Ion Battery Cell Production
,”
J. Power Sources
,
413
, pp.
360
366
.
40.
Lange
,
K.
,
1985
,
Handbook of Metal Forming
,
McGraw-Hill
,
New York
.
41.
Hambli
,
R.
,
2002
, “
Design of Experiment Based Analysis for Sheet Metal Blanking Processes Optimisation
,”
Int. J. Adv. Manuf. Technol.
,
19
(
6
), pp.
403
410
.
42.
Hoppe
,
F.
,
Hohmann
,
J.
,
Knoll
,
M.
,
Kubik
,
C.
, and
Groche
,
P.
,
2019
, “
Feature-Based Supervision of Shear Cutting Processes on the Basis of Force Measurements: Evaluation of Feature Engineering and Feature Extraction
,”
Procedia Manuf.
,
34
, pp.
847
856
.
43.
Hohmann
,
J.
,
Schatz
,
T.
, and
Groche
,
P.
,
2017
, “
Intelligent Wear Identification Based on Sensory Inline Information for a Stamping Process
,”
Proceedings of Fifth International Conference on Advanced Manufacturing Engineering and Technologies
,
Belgrade, Serbia
,
June 5–9
, pp.
285
295
.
44.
Groche
,
P.
,
Hohmann
,
J.
, and
Übelacker
,
D.
,
2019
, “
Overview and Comparison of Different Sensor Positions and Measuring Methods for the Process Force Measurement in Stamping Operations
,”
Measurement
,
135
, pp.
122
130
.
45.
Übelacker
,
D.
,
2018
, “
Procedure for the Design of Phase-Oriented Process Force Monitoring Systems for Forming Processes
,” Ph.D. thesis,
Institute for Production Engineering and Forming Machines, Technical University
,
Darmstadt, Germany
.
46.
Groche
,
P.
,
Hoppe
,
F.
,
Hesse
,
D.
, and
Calmano
,
S.
,
2016
, “
Blanking-Bending Process Chain With Disturbance Feed-Forward and Closed-Loop Control
,”
J. Manuf. Process.
,
24
(
1
), pp.
62
70
.
47.
Sarveniazi
,
A.
,
2014
, “
An Actual Survey of Dimensionality Reduction
,”
Am. J. Comput. Math.
,
4
(
2
), pp.
55
72
.
48.
Petersen
,
J.
,
Estépar
,
R. S J.
,
Schmidt-Richberg
,
A.
,
Gerard
,
S.
,
Lassen-Schmidt
,
B.
,
Jacobs
,
R.
, and
Mori
,
K
,
2020
,
Thoracic Image Analysis
,
Springer International Publishing
,
Basel, Switzerland
.
49.
Gouarir
,
A.
,
Martínez-Arellano
,
G.
,
Terrazas
,
G.
,
Benardos
,
P.
, and
Ratchev
,
S.
,
2018
, “
In-Process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis
,”
Procedia CIRP
,
77
, pp.
501
504
.
50.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. Royal Society London
,
454
, pp.
903
995
.
51.
Martinez-Plumed
,
F.
,
Contreras-Ochando
,
L.
,
Ferri
,
C.
,
Hernandez-Orallo
,
J.
,
Kull
,
M.
,
Lachiche
,
N.
,
Ramirez-Quintana
,
M. J.
, and
Flach
,
P.
,
2021
, “
CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories
,”
IEEE Trans. Knowl. Data Eng.
,
33
(
8
), pp.
3048
3061
.
52.
Kubik
,
C.
,
Hohmann
,
J.
, and
Groche
,
P.
,
2021
, “
Exploitation of Force Displacement Curves in Blanking—Feature Engineering Beyond Defect Detection
,”
Int. J. Adv. Manuf. Syst.
,
113
(
1
), pp.
261
278
.
53.
Zhou
,
B.
,
Khosla
,
A.
,
Oliva
,
A.
, and
Torralba
,
A.
,
2016
, “
Learning Deep Features for Discriminative Localization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 25–30
, pp.
2921
2929
.
54.
Groche
,
P.
,
Kraft
,
M.
,
Schmitt
,
S.
,
Calmano
,
S.
,
Lorenz
,
U.
, and
Ederer
,
T.
,
2011
, “
Control of Uncertainties in Metal Forming by Applications of Higher Flexibility Dimensions
,”
Appl. Mech. Mater.
,
104
, pp.
83
93
. www.scientific.net/AMM.104.83
55.
Rocky Newman
,
W.
,
Hanna
,
M.
, and
Jo Maffei
,
M.
,
1993
, “
Dealing With the Uncertainties of Manufacturing: Flexibility, Buffers and Integration
,”
Int. J. Oper. Prod. Manage.
,
13
(
1
), pp.
19
34
.
56.
Calmano
,
S.
,
Hesse
,
D.
,
Hoppe
,
F.
,
Traidl
,
P.
,
Sinz
,
J.
, and
Groche
,
P.
,
2015
, “
Orbital Forming of Flange Parts Under Uncertainty
,”
Appl. Mech. Mater.
,
807
, pp.
121
129
. www.scientific.net/AMM.807.121
57.
Adler
,
P. S.
, and
Clark
,
K. B.
,
1991
, “
Behind the Learning Curve: A Sketch of the Learning Process
,”
Manage. Sci.
,
37
(
3
), pp.
267
281
.
58.
Hernandez
,
S.
,
Hardell
,
J.
,
Winkelmann
,
H.
,
Ripoll
,
M. R.
, and
Prakash
,
B.
,
2015
, “
Influence of Temperature on Abrasive Wear of Boron Steel and Hot Forming Tool Steels
,”
Wear
,
338
, pp.
27
35
.
59.
Weiss
,
M.
,
Dingle
,
M. E.
,
Rolfe
,
B. F.
, and
Hodgson
,
P. D.
,
2007
, “
The Influence of Temperature on the Forming Behavior of Metal/Polymer Laminates in Sheet Metal Forming
,”
J. Eng. Mater. Technol.
,
129
(
4
), pp.
530
537
.
60.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Oxford
.
61.
Kragelskii
,
I. V.
, and
Marchenko
,
E. A.
,
1982
, “
Wear of Machine Components
,”
J. Lubr. Tech.
,
104
(
1
), pp.
1
8
.
62.
Davim
,
J. P.
,
2013
,
Tribology in Manufacturing Technology
,
Springer
,
Berlin, Germany
.
63.
Behrens
,
B.-A.
,
Brecher
,
C.
,
Hork
,
M.
, and
Werbs
,
M.
,
2007
, “
New Standardized Procedure for the Measurement of the Static and Dynamic Properties of Forming Machines
,”
Prod. Eng.
,
1
(
1
), pp.
31
36
.
64.
Kumar
,
A.
, and
Das
,
A.
,
2021
, “
A Nonlinear Process Monitoring Strategy for a Metal Forming Process
,”
Mater. Today: Proc.
,
In Press
.
65.
Ablat
,
M. A.
, and
Qattawi
,
A.
,
2017
, “
Numerical Simulation of Sheet Metal Forming: A Review
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1
), pp.
1235
1250
.
66.
Anasagasti
,
M.
,
Godoy
,
L.
,
Socorro
,
R.
,
García
,
R.
,
Iturrospe
,
A.
, and
Viguera
,
M.
,
2016
, “
Consolidated State-of-the-Art of Sensor
,” Report No. 662189—MANTIS—ECSEL-2014-1. http://www.mantis-project.eu/wp-content/uploads/2016/07/D1.2_Appendix4.pdf.
67.
Brankamp Marposs
,
2020
. “
Process Monitoring
,” Report No. 05/2020. https://www.marposs.com/media/13420/d-1/t-file/BRANKAMP_MSP_EN.pdf.
68.
Bergs
,
T.
,
Niemietz
,
P.
,
Kaufman
,
T.
, and
Trauth
,
D.
,
2020
, “
Punch-to-Punch Variations in Stamping Processes
,”
IEEE 18th World Symposium on Applied Machine Intelligence and Informatics
,
Herlany, Slovakia
,
Jan. 23–25
, pp.
213
218
69.
Lihui
,
W.
, and
Gao
,
R. X.
,
2006
,
Condition Monitoring and Control for Intelligent Manufacturing
,
Springer Science & Business Media
,
London, UK
.
70.
Barandas
,
M.
,
Folgado
,
D.
,
Fernandes
,
L.
,
Santos
,
S.
,
Abreu
,
M.
,
Bota
,
P.
,
Liu
,
H.
,
Schultz
,
T.
, and
Gamboa
,
H.
,
2020
, “
TSFEL: Time Series Feature Extraction Library
,”
SoftwareX
,
11
, p.
100456
.
71.
Huang
,
C.-Y.
, and
Dzulfikri
,
Z.
,
2021
, “
Stamping Monitoring by Using an Adaptive 1D Convolutional Neural Network
,”
Sensors
,
21
(
1
), pp.
1
21
.
72.
Koh
,
C. K. H.
,
Shi
,
J.
,
Williams
,
W. J.
, and
Ni
,
J.
,
1999
, “
Multiple Fault Detection and Isolation Using the Haar Transform, Part 1: Theory
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
290
294
.
73.
Li
,
X.
,
Dong
,
S.
, and
Yuan
,
Z.
,
1999
, “
Discrete Wavelet Transform for Tool Breakage Monitoring
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1935
1944
.
74.
Allaoui
,
M.
,
Kherfi
,
M. L.
, and
Cheriet
,
A.
,
2020
, “Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study,”
Image and Signal Processing
,
Springer International Publishing
,
Basel
, pp.
317
325
.
75.
Kuzial
,
R.
,
Kawalla
,
R.
, and
Waengler
,
S.
,
2008
, “
Advanced High Strength Steels for Automotive Industry
,”
Arch. Civil Mech. Eng.
,
8
(
2
), pp.
103
117
.
76.
Isermann
,
R.
,
2011
,
Fault-Diagnosis Applications
,
Springer
,
Berlin
.
You do not currently have access to this content.