Abstract

The use of lighter materials is one of the efficient means to mitigate the increasing demands on fuel resources, reduce CO2 emissions. Mg is one of the lightest material available and possesses exciting range of properties such as low density and high strength to weight ratio. Despite such exciting properties, the applications of Mg and its alloys were very limited in aerospace, automotive, and biomedical industries but recently the application is picking-up. The restricted application is attributed to anisotropy, poor corrosive resistance, and inflammability of Mg. The current review addresses the barriers limiting the widespread application of Mg based materials. Furthermore, the mitigation of the problems of anisotropy, poor corrosion resistance, ductility, and inflammability of Mg are critically reviewed. The findings of this research provide insights of the processing techniques, properties and how to address the potential barriers of limited applications. The review paper will assist and motivate the researchers to ponder and overcome numerous problems related to Mg and its alloys by understanding the importance of each problem discussed in this review. An attempt has also been made to arrange research status on issues and the mitigation thereof with respect to Mg and its alloys as single reference point.

References

1.
Song
,
G. L.
, and
Atrens
,
A.
,
1999
, “
Corrosion Mechanisms of Magnesium Alloys
,”
Adv. Eng. Mater.
,
1
(
1
), pp.
11
33
.
2.
Esmaily
,
M.
,
Svensson
,
J. E.
,
Fajardo
,
S.
,
Birbilis
,
N.
,
Frankel
,
G. S.
,
Virtanen
,
S.
,
Arrabal
,
R.
,
Thomas
,
S.
, and
Johansson
,
L. G.
,
2017
, “
Fundamentals and Advances in Magnesium Alloy Corrosion
,”
Prog. Mater. Sci.
,
89
, pp.
92
193
.
3.
Orozco-Caballero
,
A.
,
Lunt
,
D.
,
Robson
,
J. D.
, and
Quinta da Fonseca
,
J.
,
2017
, “
How Magnesium Accommodates Local Deformation Incompatibility: A High-Resolution Digital Image Correlation Study
,”
Acta Mater.
,
133
, pp.
367
379
.
4.
Bohlen
,
J.
,
Nürnberg
,
M. R.
,
Senn
,
J. W.
,
Letzig
,
D.
, and
Agnew
,
S. R.
,
2007
, “
The Texture and Anisotropy of Magnesium-Zinc-Rare Earth Alloy Sheets
,”
Acta Mater.
,
55
(
6
), pp.
2101
2112
.
5.
Agnew
,
S. R.
,
2016
, “Plastic Anisotropy of Magnesium Alloy AZ31B Sheet,”
Essential Readings in Magnesium Technology
,
S. N.
Mathaudhu
,
A. A.
Luo
,
N. R.
Neelameggham
,
E. A.
Nyberg
, and
W. H.
Sillekens
, eds.,
Springer
,
Cham
, pp.
351
356
.
6.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
7.
Wenk
,
H. R.
, and
Van Houtte
,
P.
,
2004
, “
Texture and Anisotropy
,”
Reports Prog. Phys.
,
67
(
8
), pp.
1367
1428
.
8.
Lefebvre
,
G.
,
2014
,
Relationship Between Microstructure, Texture and Ridging in Ferritic Stainless Steels
,
University of British Columbia
,
Vancouver
.
9.
Kowalczyk
,
K.
, and
Gambin
,
W.
,
2004
, “
Model of Plastic Anisotropy Evolution With Texture-Dependent Yield Surface
,”
Int. J. Plast.
,
20
(
1
), pp.
19
54
.
10.
Biswas
,
A.
,
Vajragupta
,
N.
,
Hielscher
,
R.
, and
Hartmaier
,
A.
,
2020
, “
Optimized Reconstruction of the Crystallographic Orientation Density Function Based on a Reduced Set of Orientations Reconstruction of the Orientation Density Function
,”
J. Appl. Crystallogr.
,
53
(
1
), pp.
178
187
.
11.
Klosek
,
V.
,
2017
, “
Crystallographic Textures
,”
The European Physical Journal Conferences
,
155
.
12.
Wei
,
K.
,
Hu
,
R.
,
Yin
,
D.
,
Xiao
,
L.
,
Pang
,
S.
,
Cao
,
Y.
,
Zhou
,
H.
,
Zhao
,
Y.
, and
Zhu
,
Y.
,
2020
, “
Grain Size Effect on Tensile Properties and Slip Systems of Pure Magnesium
,”
Acta Mater.
,
206
, p.
116604
.
13.
You
,
S.
,
Huang
,
Y.
,
Kainer
,
K. U.
, and
Hort
,
N.
,
2017
, “
Recent Research and Developments on Wrought Magnesium Alloys
,”
J. Magnes. Alloy.
,
5
(
3
), pp.
239
253
.
14.
Hutchinson
,
B.
,
2015
, “
Critical Assessment 16: Anisotropy in Metals
,”
Mater. Sci. Technol. (United Kingdom)
,
31
(
12
), pp.
1393
1401
.
15.
Suh
,
J.
,
Victoria-Hernández
,
J.
,
Letzig
,
D.
,
Golle
,
R.
, and
Volk
,
W.
,
2016
, “
Enhanced Mechanical Behavior and Reduced Mechanical Anisotropy of AZ31 Mg Alloy Sheet Processed by ECAP
,”
Mater. Sci. Eng. A
,
650
, pp.
523
529
.
16.
Jeong
,
J.
,
Alfreider
,
M.
,
Konetschnik
,
R.
,
Kiener
,
D.
, and
Oh
,
S. H.
,
2018
, “
In-Situ TEM Observation of {101¯2} Twin-Dominated Deformation of Mg Pillars: Twinning Mechanism, Size Effects and Rate Dependency
,”
Acta Mater.
,
158
, pp.
407
421
.
17.
Yoo
,
M. H.
,
1981
, “
Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals
,”
Metall. Trans. A
,
12
(
3
), pp.
409
418
.
18.
Li
,
B.
, and
Ma
,
E.
,
2009
, “
Pyramidal Slip in Magnesium: Dislocations and Stacking Fault on the
{ 10 1 ¯ 1 }
Plane
,”
Philos. Mag.
,
89
(
14
), pp.
1223
1235
.
19.
Partridge
,
P. G.
,
1967
, “
The Crystallography and Deformation Modes of Hexagonal Close-Packed Metals
,”
Metall. Rev.
,
12
(
1
), pp.
169
194
.
20.
Koike
,
J.
,
Kobayashi
,
T.
,
Mukai
,
T.
,
Watanabe
,
H.
,
Suzuki
,
M.
,
Maruyama
,
K.
, and
Higashi
,
K.
,
2003
, “
The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys
,”
Acta Mater.
,
51
(
7
), pp.
2055
2065
.
21.
Agnew
,
S. R.
,
2012
, “Deformation Mechanisms of Magnesium Alloys,”
Advances in Wrought Magnesium Alloys
,
C.
Bettles
, and
M. M.
Barnett
, eds.,
Woodhead Publishing Ltd
,
New York
, pp.
63
104
.
22.
Yu
,
Q.
,
Qi
,
L.
,
Mishra
,
R. K.
,
Li
,
J.
, and
Minor
,
A. M.
,
2013
, “
Reducing Deformation Anisotropy to Achieve Ultrahigh Strength and Ductility in Mg at the Nanoscale
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
33
), pp.
13289
13293
.
23.
Agnew
,
S. R.
, and
Duygulu
,
Ö
,
2005
, “
Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B
,”
Int. J. Plast.
,
21
(
6
), pp.
1161
1193
.
24.
Kang
,
F.
,
Li
,
Z.
,
Wang
,
J. T.
,
Cheng
,
P.
, and
Wu
,
H. Y.
,
2012
, “
The Activation of c + a Non-Basal Slip in Magnesium Alloys
,”
J. Mater. Sci.
,
47
(
22
), pp.
7854
7859
.
25.
Zhu
,
G.
,
Wang
,
L.
,
Zhou
,
H.
,
Wang
,
J.
,
Shen
,
Y.
,
Tu
,
P.
,
Zhu
,
H.
,
Liu
,
W.
,
Jin
,
P.
, and
Zeng
,
X.
,
2019
, “
Improving Ductility of a Mg Alloy via Non-Basal Slip Induced by Ca Addition
,”
Int. J. Plast.
,
120
, pp.
164
179
.
26.
Sabat
,
R. K.
,
Brahme
,
A. P.
,
Mishra
,
R. K.
,
Inal
,
K.
, and
Suwas
,
S.
,
2018
, “
Ductility Enhancement in Mg-0.2%Ce Alloys
,”
Acta Mater.
,
161
, pp.
246
257
.
27.
Hull
,
D.
, and
Bacon
,
D. J.
,
2011
,
Introduction to Dislocations
,
Elsevier Ltd.
,
Amsterdam
.
28.
Chun
,
Y. B.
,
Battaini
,
M.
,
Davies
,
C. H. J.
, and
Hwang
,
S. K.
,
2010
, “
Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation With Active Slip Modes
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
41
(
13
), pp.
3473
3487
.
29.
Hutchinson
,
W. B.
, and
Barnett
,
M. R.
,
2010
, “
Effective Values of Critical Resolved Shear Stress for Slip in Polycrystalline Magnesium and Other Hcp Metals
,”
Scr. Mater.
,
63
(
7
), pp.
737
740
.
30.
Davis
,
A. E.
,
Robson
,
J. D.
, and
Turski
,
M.
,
2019
, “
Reducing Yield Asymmetry and Anisotropy in Wrought Magnesium Alloys—A Comparative Study
,”
Mater. Sci. Eng. A
,
744
, pp.
525
537
.
31.
Li
,
B.
,
Pan
,
Q.
,
Chen
,
C.
,
Wu
,
H.
, and
Yin
,
Z.
,
2016
, “
Effects of Solution Treatment on Microstructural and Mechanical Properties of Al-Zn-Mg Alloy by Microalloying With Sc and Zr
,”
J. Alloys Compd.
,
664
, pp.
553
564
.
32.
Al-Samman
,
T.
, and
Li
,
X.
,
2011
, “
Sheet Texture Modification in Magnesium-Based Alloys by Selective Rare Earth Alloying
,”
Mater. Sci. Eng. A
,
528
(
10–11
), pp.
3809
3822
.
33.
Stanford
,
N.
,
2010
, “
Micro-Alloying Mg With Y, Ce, Gd and La for Texture Modification—A Comparative Study
,”
Mater. Sci. Eng. A
,
527
(
10–11
), pp.
2669
2677
.
34.
Mishra
,
R. K.
,
Gupta
,
A. K.
,
Rao
,
P. R.
,
Sachdev
,
A. K.
,
Kumar
,
A. M.
, and
Luo
,
A. A.
,
2008
, “
Influence of Cerium on the Texture and Ductility of Magnesium Extrusions
,”
Scr. Mater.
,
59
(
5
), pp.
562
565
.
35.
Gao
,
L.
,
Chen
,
R. S.
, and
Han
,
E. H.
,
2009
, “
Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys
,”
J. Alloys Compd.
,
481
(
1–2
), pp.
379
384
.
36.
Stanford
,
N.
,
Atwell
,
D.
, and
Barnett
,
M. R.
,
2010
, “
The Effect of Gd on the Recrystallisation, Texture and Deformation Behaviour of Magnesium-Based Alloys
,”
Acta Mater.
,
58
(
20
), pp.
6773
6783
.
37.
Bugnet
,
M.
,
Kula
,
A.
,
Niewczas
,
M.
, and
Botton
,
G. A.
,
2014
, “
Segregation and Clustering of Solutes at Grain Boundaries in Mg-Rare Earth Solid Solutions
,”
Acta Mater.
,
79
, pp.
66
73
.
38.
Kim
,
S. H.
,
Jung
,
J. G.
,
You
,
B. S.
, and
Park
,
S. H.
,
2017
, “
Microstructure and Texture Variation With Gd Addition in Extruded Magnesium
,”
J. Alloys Compd.
,
695
, pp.
344
350
.
39.
Wu
,
W. X.
,
Jin
,
L.
,
Zhang
,
Z. Y.
,
Ding
,
W. J.
, and
Dong
,
J.
,
2014
, “
Grain Growth and Texture Evolution During Annealing in an Indirect-Extruded Mg-1Gd Alloy
,”
J. Alloys Compd.
,
585
, pp.
111
119
.
40.
Stanford
,
N.
,
2013
, “
The Effect of Rare Earth Elements on the Behaviour of Magnesium-Based Alloys: Part 2—Recrystallisation and Texture Development
,”
Mater. Sci. Eng. A
,
565
, pp.
469
475
.
41.
Jiang
,
M. G.
,
Xu
,
C.
,
Nakata
,
T.
,
Yan
,
H.
,
Chen
,
R. S.
, and
Kamado
,
S.
,
2016
, “
Rare Earth Texture and Improved Ductility in a Mg-Zn-Gd Alloy After High-Speed Extrusion
,”
Mater. Sci. Eng. A
,
667
, pp.
233
239
.
42.
Wu
,
W. X.
,
Jin
,
L.
,
Wang
,
F. H.
,
Sun
,
J.
,
Zhang
,
Z. Y.
,
Ding
,
W. J.
, and
Dong
,
J.
,
2013
, “
Microstructure and Texture Evolution During Hot Rolling and Subsequent Annealing of Mg-1Gd Alloy
,”
Mater. Sci. Eng. A
,
582
, pp.
194
202
.
43.
Wu
,
J.
,
Jin
,
L.
,
Dong
,
J.
,
Wang
,
F.
, and
Dong
,
S.
,
2020
, “
The Texture and Its Optimization in Magnesium Alloy
,”
J. Mater. Sci. Technol.
,
42
, pp.
175
189
.
44.
Agnew
,
S. R.
, and
Duygulu
,
Ö
,
2005
, “
Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B
,”
Int. J. Plast.
,
21
(
6
), pp.
1161
1193
.
45.
Barnett
,
M. R.
,
Nave
,
M. D.
, and
Bettles
,
C. J.
,
2004
, “
Deformation Microstructures and Textures of Some Cold Rolled Mg Alloys
,”
Mater. Sci. Eng. A
,
386
(
1–2
), pp.
205
211
.
46.
Wang
,
B.
,
Xin
,
R.
,
Huang
,
G.
, and
Liu
,
Q.
,
2012
, “
Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression
,”
Mater. Sci. Eng. A
,
534
, pp.
588
593
.
47.
Imandoust
,
A.
,
Barrett
,
C. D.
,
Oppedal
,
A. L.
,
Whittington
,
W. R.
,
Paudel
,
Y.
, and
El Kadiri
,
H.
,
2017
, “
Nucleation and Preferential Growth Mechanism of Recrystallization Texture in High Purity Binary Magnesium-Rare Earth Alloys
,”
Acta Mater.
,
138
, pp.
27
41
.
48.
Jung
,
I. H.
,
Sanjari
,
M.
,
Kim
,
J.
, and
Yue
,
S.
,
2015
, “
Role of RE in the Deformation and Recrystallization of Mg Alloy and a New Alloy Design Concept for Mg-RE Alloys
,”
Scr. Mater.
,
102
, pp.
1
6
.
49.
Liu
,
P.
,
Jiang
,
H.
,
Cai
,
Z.
,
Kang
,
Q.
, and
Zhang
,
Y.
,
2016
, “
The Effect of Y, Ce and Gd on Texture, Recrystallization and Mechanical Property of Mg–Zn Alloys
,”
J. Magnes. Alloy.
,
4
(
3
), pp.
188
196
.
50.
Masoumi
,
M.
,
Hoseini
,
M.
, and
Pekguleryuz
,
M.
,
2011
, “
The Influence of Ce on the Microstructure and Rolling Texture of Mg-1%Mn Alloy
,”
Mater. Sci. Eng. A
,
528
(
7–8
), pp.
3122
3129
.
51.
Griffiths
,
D.
,
2015
, “
Explaining Texture Weakening and Improved Formability in Magnesium Rare Earth Alloys
,”
Mater. Sci. Technol. (United Kingdom)
,
31
(
1
), pp.
10
24
.
52.
Guan
,
D.
,
Liu
,
X.
,
Gao
,
J.
,
Ma
,
L.
,
Wynne
,
B. P.
, and
Rainforth
,
W. M.
,
2019
, “
Exploring the Mechanism of ‘Rare Earth’ Texture Evolution in a Lean Mg–Zn–Ca Alloy
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
53.
Ball
,
E. A.
, and
Prangnell
,
P. B.
,
1994
, “
Tensile-Compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys
,”
Scr. Metall. Mater.
,
31
(
2
), pp.
111
116
.
54.
Barnett
,
M. R.
,
2003
, “
A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 During Hot Working
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
34A
(
9
), pp.
1799
1806
.
55.
Mackenzie
,
L. W. F.
, and
Pekguleryuz
,
M. O.
,
2008
, “
The Recrystallization and Texture of Magnesium-Zinc-Cerium Alloys
,”
Scr. Mater.
,
59
(
6
), pp.
665
668
.
56.
Stanford
,
N.
, and
Barnett
,
M. R.
,
2008
, “
The Origin of ‘Rare Earth’ Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility
,”
Mater. Sci. Eng. A
,
496
(
1–2
), pp.
399
408
.
57.
Barnett
,
M. R.
,
Sullivan
,
A.
,
Stanford
,
N.
,
Ross
,
N.
, and
Beer
,
A.
,
2010
, “
Texture Selection Mechanisms in Uniaxially Extruded Magnesium Alloys
,”
Scr. Mater.
,
63
(
7
), pp.
721
724
.
58.
Guan
,
D.
,
Rainforth
,
W. M.
,
Gao
,
J.
,
Ma
,
L.
, and
Wynne
,
B.
,
2018
, “
Individual Effect of Recrystallisation Nucleation Sites on Texture Weakening in a Magnesium Alloy: Part 2-Shear Bands
,”
Acta Mater.
,
145
, pp.
399
412
.
59.
Letzig
,
D.
,
Stutz
,
L.
,
Bohlen
,
J.
, and
Kainer
,
K. U.
,
2011
, “Effects of Processing, Texture and Temperature on the Formability of AZ31 and ZE10 Sheets,”
Materials Science Forum
,
H.
Dieringa
,
N.
Hort
, and
K. U.
Kainer
, eds.,
Trans Tech Publications Ltd.
,
Switzerland
, pp.
298
301
.
60.
Chun
,
Y. B.
, and
Davies
,
C. H. J.
,
2011
, “
Twinning-Induced Negative Strain Rate Sensitivity in Wrought Mg Alloy AZ31
,”
Mater. Sci. Eng. A
,
528
(
18
), pp.
5713
5722
.
61.
Robson
,
J.
,
2014
, “
Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature
,”
Metall. Mater. Trans. A
,
45
(
11
), pp.
5226
5235
.
62.
Wang
,
P.
,
Guo
,
E.
,
Wang
,
X.
,
Kang
,
H.
,
Chen
,
Z.
,
Cao
,
Z.
, and
Wang
,
T.
,
2019
, “
The Influence of Sc Addition on Microstructure and Tensile Mechanical Properties of Mg–4.5Sn–5Zn Alloys
,”
J. Magnes. Alloy.
,
7
(
3
), pp.
456
465
.
63.
Chen
,
S. F.
,
Song
,
H. W.
,
Cheng
,
M.
,
Zheng
,
C.
,
Zhang
,
S. H.
, and
Lee
,
M. G.
,
2021
, “
Texture Modification and Mechanical Properties of AZ31 Magnesium Alloy Sheet Subjected to Equal Channel Angular Bending
,”
J. Mater. Sci. Technol.
,
67
, pp.
211
225
.
64.
Oh-ishi
,
K.
,
Hono
,
K.
, and
Shin
,
K. S.
,
2008
, “
Effect of Pre-Aging and Al Addition on Age-Hardening and Microstructure in Mg-6 Wt% Zn Alloys
,”
Mater. Sci. Eng. A
,
496
(
1–2
), pp.
425
433
.
65.
Rokhlin
,
L. L.
,
2003
,
Magnesium Alloys Containing Rare Earth Metals
,
CRC Press
,
London
.
66.
Sandlöbes
,
S.
,
Friák
,
M.
,
Neugebauer
,
J.
, and
Raabe
,
D.
,
2013
, “
Basal and Non-Basal Dislocation Slip in Mg–Y
,”
Mater. Sci. Eng. A
,
576
, pp.
61
68
.
67.
Hadorn
,
J. P.
,
Hantzsche
,
K.
,
Yi
,
S.
,
Bohlen
,
J.
,
Letzig
,
D.
,
Wollmershauser
,
J. A.
, and
Agnew
,
S. R.
,
2012
, “
Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys
,”
Metall. Mater. Trans. A
,
43
, pp.
1347
1362
.
68.
StJohn
,
D. H.
,
Qian
,
M.
, and
Easton
,
M. A.
,
2005
, “
Grain Refinement of Magnesium Alloys
,”
Metall. Mater. Trans. A
,
36
, pp.
1669
1679
.
69.
Ghali
,
E.
,
2011
, “Activity and passivity of magnesium (Mg) and its alloys,”
Corrosion of Magnesium Alloys
,
G.
Song
, ed.,
Woodhead Publishing Limited
,
Cambridge
, pp.
66
114
.
70.
Song
,
G. L.
,
2011
, “Corrosion electrochemistry of magnesium (Mg) and its alloys,”
Corrosion of Magnesium Alloys
,
G.
Song
, ed.,
Woodhead Publishing Limited
,
Cambridge
, pp.
3
65
.
71.
Jönsson
,
M.
, and
Persson
,
D.
,
2010
, “
The Influence of the Microstructure on the Atmospheric Corrosion Behaviour of Magnesium Alloys AZ91D and AM50
,”
Corros. Sci.
,
52
(
3
), pp.
1077
1085
.
72.
Jang
,
Y.
,
Owuor
,
D.
,
Waterman
,
J. T.
,
White
,
L.
,
Collins
,
B.
,
Sankar
,
J.
,
Gilbert
,
T. W.
, and
Yun
,
Y.
,
2014
, “
Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents
,”
Materials (Basel)
,
7
(
8
), pp.
5866
5882
.
73.
Atrens
,
A.
,
Song
,
G. L.
,
Liu
,
M.
,
Shi
,
Z.
,
Cao
,
F.
, and
Dargusch
,
M. S.
,
2015
, “
Review of Recent Developments in the Field of Magnesium Corrosion
,”
Adv. Eng. Mater.
,
17
(
4
), pp.
400
453
.
74.
Ferrando
,
W. A.
,
1989
, “
Review of Corrosion and Corrosion Control of Magnesium Alloys and Composites
,”
J. Mater. Eng.
,
11
(
4
), pp.
299
313
.
75.
Avedesian
,
M.
, and
Baker
,
H.
, eds.,
1999
,
Magnesium and Magnesium Alloys
,
ASM Internaional
,
Materials Park, OH
.
76.
Hu
,
H.
,
Nie
,
X.
, and
Ma
,
Y.
,
2014
, “Corrosion and Surface Treatment of Magnesium Alloys,”
Magnesium Alloys – Properties in Solid and Liquid States
,
F.
Czerwinski
, ed.,
IntechOpen
,
London, UK
.
77.
Makar
,
G. L.
, and
Kruger
,
J.
,
1993
, “
Corrosion of Magnesium
,”
Int. Mater. Rev.
,
38
(
3
), pp.
138
153
.
78.
Song
,
G.-L.
, ed.,
2011
,
Corrosion of Magnesium Alloys
,
Woodhead Publishing Limited
,
Cambridge, UK
.
79.
Song
,
G.
,
Atrens
,
A.
,
Stjohn
,
D.
,
Nairn
,
J.
, and
Li
,
Y.
,
1997
, “
The Electrochemical Corrosion of Pure Magnesium in 1 N NaCl
,”
Corros. Sci.
,
39
(
5
), pp.
855
875
.
80.
Song
,
G.-L.
,
Atrens
,
A.
, and
Dargusch
,
M.
,
1998
, “
Influence of Microstructure on the Corrosion of Diecast AZ91D
,”
Corros. Sci.
,
41
(
2
), pp.
249
273
.
81.
Esmaily
,
M.
,
Mortazavi
,
N.
,
Svensson
,
J. E.
,
Halvarsson
,
M.
,
Blücher
,
D. B.
,
Jarfors
,
A. E. W.
,
Wessén
,
M.
, and
Johansson
,
L. G.
,
2015
, “
Atmospheric Corrosion of Mg Alloy AZ91D Fabricated by a Semi-Solid Casting Technique: The Influence of Microstructure
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
C311
C321
.
82.
Bahmani
,
A.
,
Arthanari
,
S.
, and
Shin
,
K. S.
,
2020
, “
Formulation of Corrosion Rate of Magnesium Alloys Using Microstructural Parameters
,”
J. Magnes. Alloy.
,
8
(
1
), pp.
134
149
.
83.
Cao
,
F.
,
Song
,
G.-L.
, and
Atrens
,
A.
,
2016
, “
Corrosion and Passivation of Magnesium Alloys Corrosion and Passivation of Magnesium Alloys
,”
Corr. Sci.
,
111
, pp.
835
845
.
84.
Ralston
,
K. D.
, and
Birbilis
,
N.
,
2010
, “
Effect of Grain Size on Corrosion: A Review
,”
Corrosion
,
66
(
7
), pp.
0750051
07500513
.
85.
Zheng
,
T.
,
Hu
,
Y.
, and
Yang
,
S.
,
2017
, “
Effect of Grain Size on the Electrochemical Behavior of Pure Magnesium Anode
,”
J. Magnes. Alloy.
,
5
(
4
), pp.
404
411
.
86.
Han
,
G.
,
Lee
,
J. Y.
,
Kim
,
Y. C.
,
Park
,
J. H.
,
Kim
,
D. I.
,
Han
,
H. S.
,
Yang
,
S. J.
, and
Seok
,
H. K.
,
2012
, “
Preferred Crystallographic Pitting Corrosion of Pure Magnesium in Hanks’ Solution
,”
Corros. Sci.
,
63
(
63
), pp.
316
322
.
87.
Song
,
G.
, and
Atrens
,
A.
,
2003
, “
Understanding Magnesium Corrosion. A Framework for Improved Alloy Performance
,”
Adv. Eng. Mater.
,
5
(
12
), pp.
837
858
.
88.
Atrens
,
A.
,
Dietzel
,
W.
,
Bala Srinivasan
,
P.
,
Winzer
,
N.
, and
Bobby Kannan
,
M.
,
2011
, “Stress corrosion (SCC) of magnesium alloys,”
Stress Corrosion Cracking: Theory and Practice
,
V. S.
Raja
, and
T.
Shoji
, eds.,
Elsevier Ltd.
,
Cambridge, UK
, pp.
341
380
.
89.
Cramer
,
S. D.
, and
Covino
,
B. S.
,
2003
,
Corrosion: Fundamentals, Testing, and Protection
,
ASM International
,
Ohio
.
90.
Zeng
,
R.-C.
,
Yin
,
Z.-Z.
,
Chen
,
X.-B.
, and
Xu
,
D.-K.
,
2018
, “Corrosion Types of Magnesium Alloys,”
Magnes. Alloy.—Sel. Issue.
,
T.
Tański
,
W.
Borek
, and
M.
Król
, eds.,
IntechOpen
,
London, UK
.
91.
Bunshah
,
R. F.
,
2000
,
Handbook of Hard Coatings
,
William Andrew
,
New York
.
92.
McIntyre
,
N. S.
, and
Chen
,
C.
,
1998
, “
Role of Impurities on Mg Surfaces Under Ambient Exposure Conditions
,”
Corros. Sci.
,
40
(
10
), pp.
1697
1709
.
93.
Zeng
,
R. C.
,
Zhang
,
J.
,
Huang
,
W. J.
,
Dietzel
,
W.
,
Kainer
,
K. U.
,
Blawert
,
C.
, and
Ke
,
W.
,
2006
, “
Review of Studies on Corrosion of Magnesium Alloys
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
16
(
Suppl. 2
), pp.
s763
s771
.
94.
Du
,
J.
,
Yang
,
J.
,
Kuwabara
,
M.
,
Li
,
W.
, and
Peng
,
J.
,
2009
, “
Effect of Strontium on the Grain Refining Efficiency of Mg-3Al Alloy Refined by Carbon Inoculation
,”
J. Alloys Compd.
,
470
(
1–2
), pp.
228
232
.
95.
Govind, Suseelan Nair
,
K.
,
Mittal
,
M. C.
,
Lal
,
K.
,
Mahanti
,
R. K.
, and
Sivaramakrishnan
,
C. S.
,
2001
, “
Development of Rapidly Solidified (RS) Magnesium-Aluminium-Zinc Alloy
,”
Mater. Sci. Eng. A
,
304–306
(
1–2
), pp.
520
523
.
96.
Aung
,
N. N.
, and
Zhou
,
W.
,
2002
, “
Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of AZ91D Magnesium Alloy
,”
J. Appl. Electrochem.
,
32
(
12
), pp.
1397
1401
.
97.
Jiang
,
Y. F.
,
Zhai
,
C. Q.
,
Liu
,
L. F.
,
Zhu
,
Y. P.
, and
Ding
,
W. J.
,
2005
, “
Zn-Ni Alloy Coatings Pulse-Plated on Magnesium Alloy
,”
Surf. Coatings Technol.
,
191
(
2–3
), pp.
393
399
.
98.
Huo
,
H.
,
Li
,
Y.
, and
Wang
,
F.
,
2004
, “
Corrosion of AZ91D Magnesium Alloy With a Chemical Conversion Coating and Electroless Nickel Layer
,”
Corros. Sci.
,
46
(
6
), pp.
1467
1477
.
99.
Gray
,
J. E.
, and
Luan
,
B.
,
2002
, “
Protective Coatings on Magnesium and Its Alloys—A Critical Review
,”
J. Alloys Compd.
,
336
(
1–2
), pp.
88
113
.
100.
Howlett
,
P. C.
,
Gramet
,
S.
,
Lin
,
J.
,
Efthimiadis
,
J.
,
Chen
,
X. B.
,
Birbilis
,
N.
, and
Forsyth
,
M.
,
2012
, “
Conversion Coatings of Mg-Alloy AZ91D Using Trihexyl(Tetradecyl) Phosphonium Bis(Trifluoromethanesulfonyl)Amide Ionic Liquid
,”
Sci. China Chem.
,
55
(
8
), pp.
1598
1607
.
101.
Hillis
,
J. E.
,
2018
, “Surface Engineering of Magnesium Alloys,”
Surface Engineering
, Vol.
5
,
C. M.
Cotell
,
J. A.
Sprague
, and
F. A.
Smidt, Jr.
, eds.,
ASM International
,
Ohio
.
102.
Hoche
,
H.
,
Scheerer
,
H.
,
Probst
,
D.
,
Broszeit
,
E.
, and
Berger
,
C.
,
2003
, “
Development of a Plasma Surface Treatment for Magnesium Alloys to Ensure Sufficient Wear and Corrosion Resistance
,”
Surf. Coatings Technol.
,
174–175
, pp.
1018
1023
.
103.
Hollstein
,
F.
,
Wiedemann
,
R.
, and
Scholz
,
J.
,
2003
, “
Characteristics of PVD-Coatings on AZ31hp Magnesium Alloys
,”
Surf. Coat. Technol.
,
162
(
2–3
), pp.
261
268
.
104.
Yamauchi
,
N.
,
Demizu
,
K.
,
Ueda
,
N.
,
Cuong
,
N. K.
,
Sone
,
T.
, and
Hirose
,
Y.
,
2005
, “
Friction and Wear of DLC Films on Magnesium Alloy
,”
Surf. Coatings Technol.
,
193
(
1–3
SPEC. ISS.), pp.
277
282
.
105.
Fracassi
,
F.
,
d’Agostino
,
R.
,
Palumbo
,
F.
,
Angelini
,
E.
,
Grassini
,
S.
, and
Rosalbino
,
F.
,
2003
, “
Application of Plasma Deposited Organosilicon Thin Films for the Corrosion Protection of Metals
,”
Surf. Coatings Technol.
,
174–175
, pp.
107
111
.
106.
Phani
,
A. R.
,
Gammel
,
F. J.
,
Hack
,
T.
, and
Haefke
,
H.
,
2005
, “
Enhanced Corrosion Resistance by Sol-Gel-Based ZrO2-CeO2 Coatings on Magnesium Alloys
,”
Mater. Corros.
,
56
(
2
), pp.
77
82
.
107.
Brown
,
C. R.
,
1934
,
The Determination of the Ignition Temperature of Solid Materials
,
Catholic University of America
,
Washington, DC
.
108.
Chunmiao
,
Y.
,
Dezheng
,
H.
,
Chang
,
L.
, and
Gang
,
L.
,
2013
, “
Ignition Behavior of Magnesium Powder Layers on a Plate Heated at Constant Temperature
,”
J. Hazard. Mater.
,
246–247
, pp.
283
290
.
109.
Czerwinski
,
F.
,
2011
, “Welding and Joining of Magnesium Alloys,”
Magnesium Alloys—Design, Processing and Properties
,
F.
Czerwinski
, ed.,
InTech
,
London, UK
.
110.
Czerwinski
,
F.
,
2014
, “
Controlling the Ignition and Flammability of Magnesium for Aerospace Applications
,”
Corros. Sci.
,
86
, pp.
1
16
.
111.
Fassell
,
W. M.
,
Gulbransen
,
L. B.
,
Lewis
,
J. R.
, and
Hamilton
,
J. H.
,
1951
, “
Ignition Temperatures of Magnesium and Magnesium Alloys
,”
JOM
,
3
(
7
), pp.
522
528
.
112.
Boris
,
P.
,
1964
,
A Study of the Flammability of Magnesium
,
Washington, DC
.
113.
ASTM E659-78(2000)
,
2000
,
Standard Test Method for Autoignition Temperature of Liquid Chemicals.
,
ASTM International
,
West Conshohocken, PA
.
114.
Czerwinski
,
F.
,
2014
, “
Overcoming Barriers of Magnesium Ignition and Flammability
,”
Adv. Mater. Process.
,
172
(
5
), pp.
28
31
.
115.
Australian Government – Civil Aviation Safety Authority
,
2011
,
Cabin Interior and Cargo Compartment Flammability
,
Civil Aviation Safety Authority
,
Canberra, Australia
.
116.
Blandin
,
J.
,
Grosjean
,
E.
,
Suery
,
M.
,
Ravi Kumar
,
N.
, and
Mebarki
,
N.
,
2004
, “Ignition Resistance of Various Magnesium Alloys,”
Magnesium Technology
,
A.A.
Luo
, ed.,
TMS
,
Materials Park, OH
, pp.
235
240
.
117.
Czerwinski
,
F.
,
2008
, “Magnesium and Its Alloys,”
Magnesium Injection Molding
,
Frank
Czerwinski
, ed.,
Springer US
,
Boston, MA
, pp.
1
79
.
118.
Steeple
,
H.
,
1952
, “
The Crystal Structure of the Cadmium–Magnesium Alloy, CdMg
,”
Acta Crystallogr.
,
5
(
2
), pp.
247
249
.
119.
Moser
,
Z.
,
Gasior
,
W.
,
Wypartowicz
,
J.
, and
Zabdyr
,
L.
,
1984
, “
The Cd-Mg (Cadmium-Magnesium) System
,”
Bull. Alloy Phase Diagrams
,
5
(
1
), pp.
23
30
.
120.
Kim
,
Y. M.
,
Yim
,
C. D.
,
Kim
,
H. S.
, and
You
,
B. S.
,
2011
, “
Key Factor Influencing the Ignition Resistance of Magnesium Alloys at Elevated Temperatures
,”
Scr. Mater.
,
65
(
11
), pp.
958
961
.
121.
Zhang
,
Y.
,
Peng
,
R. Q.
,
da Zhou
,
G.
,
Fang
,
Z. P.
, and
Li
,
X. N.
,
2015
, “
Flammability Characterization and Effects of Magnesium Oxide in Halogen-Free Flame-Retardant EVA Blends
,”
Chinese J. Polym. Sci.
,
33
(
12
), pp.
1683
1690
.
122.
Ye
,
H. Z.
, and
Liu
,
X. Y.
,
2004
, “
Review of Recent Studies in Magnesium Matrix Composites
,”
J. Mater. Sci.
,
39
(
20
), pp.
6153
6171
.
123.
Wu
,
S.
,
Wang
,
S.
,
Wen
,
D.
,
Wang
,
G.
, and
Wang
,
Y.
,
2018
, “
Microstructure and Mechanical Properties of Magnesium Matrix Composites Interpenetrated by Different Reinforcement
,”
Appl. Sci.
,
8
(
11
).
124.
Singh
,
L.
,
Singh
,
B.
, and
Saxena
,
K. K.
,
2020
, “
Manufacturing Techniques for Metal Matrix Composites (MMC): An Overview
,”
Adv. Mater. Process. Technol.
,
6
(
2
), pp.
224
240
.
125.
Kumar
,
D. S.
,
Sasanka
,
C. T.
,
Ravindra
,
K.
, and
Suman
,
K. N. S.
,
2015
, “
Magnesium and Its Alloys in Automotive Applications—A Review
,”
Am. J. Mater. Sci. Technol.
,
4
(
1
), pp.
12
30
.
126.
Satish
,
J.
, and
Satish
,
K. G.
,
2017
, “
IOP Conference Series: Materials Science and Engineering.
International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2017)
,
Bengaluru, India
,
Aug. 17–19
.
127.
Singh
,
H.
,
Sarabjit
,
N. J.
, and
Tyagi
,
A. K.
,
2011
, “
An Overview of Metal Matrix Composite: Processing and Sic Based Mechanical
,”
J. Eng. Res. Stud.
,
II
, pp.
72
78
.
128.
Tański
,
T.
,
2012
, “
Surface Layers on the Mg-Al-Zn Alloys Coated Using the CVD and PVD Methods Manufacturing and Processing
,”
J. Achiev. Mater. Manuf. Eng.
,
53
(
2
).
129.
Hu
,
H.
,
1998
, “
Squeeze Casting of Magnesium Alloys and Their Composites
,”
J. Mater. Sci.
,
33
(
6
), pp.
1579
1589
.
130.
Anish
,
R.
,
Robert Singh
,
G.
, and
Sivapragash
,
M.
,
2012
, “
Techniques for Processing Metal Matrix Composite; A Survey
,”
Procedia Eng.
,
38
, pp.
3846
3854
.
131.
Lin
,
P.-C.
,
Huang
,
S.-J.
, and
Hong
,
P.-S.
,
2010
, “
Formation of Magnesium Metal Matrix Composites AL2O3 P/AZ91D and Their Mechanical Properties After Heat Treatment
,”
Acta Metallurgica Slovaca
,
16
(
4
), pp.
237
245
.
132.
Dey
,
A.
, and
Pandey
,
K. M.
,
2015
, “
Magnesium Metal Matrix Composites—A Review
,”
Rev. Adv. Mater. Sci.
,
42
, pp.
58
67
.
133.
Wong
,
W. L. E.
, and
Gupta
,
M.
,
2007
, “
Development of Mg/Cu Nanocomposites Using Microwave Assisted Rapid Sintering
,”
Compos. Sci. Technol.
,
67
(
7–8
), pp.
1541
1552
.
134.
Muhammad
,
W. N. A. W.
,
Sajuri
,
Z.
,
Mutoh
,
Y.
, and
Miyashita
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of Magnesium Composites Prepared by Spark Plasma Sintering Technology
,”
J. Alloys Compd.
,
509
(
20
), pp.
6021
6029
.
135.
Pekguleryuz
,
M.
, and
Celikin
,
M.
,
2010
, “
Creep Resistance in Magnesium Alloys
,”
Int. Mater. Rev.
,
55
(
4
), pp.
197
217
.
136.
Zhang
,
X.
,
Liao
,
L.
,
Ma
,
N.
, and
Wang
,
H.
,
2006
, “
Mechanical Properties and Damping Capacity of Magnesium Matrix Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
37
(
11
), pp.
2011
2016
.
137.
Ghasali
,
E.
,
Alizadeh
,
M.
,
Niazmand
,
M.
, and
Ebadzadeh
,
T.
,
2017
, “
Fabrication of Magnesium-Boron Carbide Metal Matrix Composite by Powder Metallurgy Route: Comparison Between Microwave and Spark Plasma Sintering
,”
J. Alloys Compd.
,
697
, pp.
200
207
.
138.
Sklenička
,
V.
, and
Langdon
,
T. G.
,
2004
, “
Creep Properties of a Fiber-Reinforced Magnesium Alloy
,”
J. Mater. Sci.
,
39
(
5
), pp.
1647
1652
.
139.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
5453
), pp.
637
640
.
140.
Park
,
Y.
,
Cho
,
K.
,
Park
,
I.
, and
Park
,
Y.
,
2011
, “
Fabrication and Mechanical Properties of Magnesium Matrix Composite Reinforced With Si Coated Carbon Nanotubes
,”
Procedia Eng.
,
10
, pp.
1446
1450
.
141.
Wang
,
H. Y.
,
Jiang
,
Q. C.
,
Zhao
,
Y. Q.
,
Zhao
,
F.
,
Ma
,
B. X.
, and
Wang
,
Y.
,
2004
, “
Fabrication of TiB2 and TiB2-TiC Particulates Reinforced Magnesium Matrix Composites
,”
Mater. Sci. Eng. A
,
372
(
1–2
), pp.
109
114
.
142.
Abbas
,
A.
,
Rajagopal
,
V.
, and
Huang
,
S.-J.
,
2021
, “Magnesium Metal Matrix Composites and Their Applications,”
Magnesium Alloys Structure and Properties
,
T. A.
Tański
, and
P.
Jarka
, eds.,
IntechOpen
,
London, UK
.
143.
Zartner
,
P.
,
Cesnjevar
,
R.
,
Singer
,
H.
, and
Weyand
,
M.
,
2005
, “
First Successful Implantation of a Biodegradable Metal Stent Into the Left Pulmonary Artery of a Preterm Baby
,”
Catheter. Cardiovasc. Interv.
,
66
(
4
), pp.
590
594
.
144.
Riaz
,
U.
,
Shabib
,
I.
, and
Haider
,
W.
,
2019
, “
The Current Trends of Mg Alloys in Biomedical Applications—A Review
,”
J. Biomed. Mater. Res.—Part B Appl. Biomater.
,
107
(
6
), pp.
1970
1996
.
145.
Chalisgaonkar
,
R.
,
2019
, “
Insight in Applications, Manufacturing and Corrosion Behaviour of Magnesium and Its Alloys—A Review
,”
Mater. Today Proc.
,
26
, pp.
1060
1071
.
146.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.
147.
Zhang
,
S.
, and
Zhao
,
D.
,
2016
,
Aerospace Materials Handbook
,
CRC Press
,
London, UK
.
148.
Heublein
,
B.
,
Rohde
,
R.
,
Kaese
,
V.
,
Niemeyer
,
M.
,
Hartung
,
W.
, and
Haverich
,
A.
,
2003
, “
Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?
,”
Heart
,
89
(
6
), pp.
651
656
.
149.
Moosbrugger
,
C.
,
2017
,
Engineering Properties of Magnesium Alloys
,
ASM International
,
Ohio
, pp.
1
12
.
150.
Radha
,
R.
, and
Sreekanth
,
D.
,
2017
, “
Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications—A Review
,”
J. Magnes. Alloy.
,
5
(
3
), pp.
286
312
.
151.
Schilling
,
T.
,
Bauer
,
M.
,
Biskup
,
C.
,
Haverich
,
A.
, and
Hassel
,
T.
,
2017
, “
Engineering of Biodegradable Magnesium Alloy Scaffolds to Stabilize Biological Myocardial Grafts
,”
Biomed. Tech.
,
62
(
5
), pp.
493
504
.
152.
Schilling
,
T.
,
Bauer
,
M.
,
Hartung
,
D.
,
Brandes
,
G.
,
Tudorache
,
I.
,
Cebotari
,
S.
,
Meyer
,
T.
,
Wacker
,
F.
,
Haverich
,
A.
, and
Hassel
,
T.
,
2020
, “
Stabilisation of a Segment of Autologous Vascularised Stomach as a Patch for Myocardial Reconstruction With Degradable Magnesium Alloy Scaffolds in a Swine Model
,”
Crystals
,
10
(
6
), p.
438
.
153.
ZoM
,
2011
, “
Magnesium Alloys—An Introduction
.” https://www.azom.com/article.aspx?ArticleID=355. Accessed February 11, 2021.
154.
Byun
,
S. H.
,
Lim
,
H. K.
,
Lee
,
S. M.
,
Kim
,
H. E.
,
Kim
,
S. M.
, and
Lee
,
J. H.
,
2020
, “
Biodegradable Magnesium Alloy (ZK60) With a Poly(l-Lactic)-Acid Polymer Coating for Maxillofacial Surgery
,”
Metals (Basel)
,
10
(
6
), p.
724
.
You do not currently have access to this content.