Circular economy has emerged as a response to increasing environmental problems. As opposed to linear economy, circular economy aims at the preservation of energy, material, and labor contents of used products. A critical process in circular economy is product recovery which involves the recovery of materials or components from returned products through various recovery options including recycling, refurbishing, and remanufacturing. All recovery options require some level of disassembly and disassembly operations that are generally carried out in a disassembly line. Like assembly lines, disassembly lines must be balanced in order to ensure the effective operation of the line. Mathematical programming techniques, metaheuristics, and various heuristic procedures were employed in order to solve different types of disassembly line balancing problem (DLBP). However, the use of multi-attribute decision making techniques is limited to few studies. In this study, we propose a DEMATEL-based disassembly line balancing approach which does not require extensive knowledge in operations research and computer programming. A solution can be obtained by carrying out basic matrix operations and following the steps of the approach. Two numerical examples are also provided in order to present the applicability of the proposed approach. The results indicate that the proposed approach presents a satisfactory performance compared to the previously proposed approaches.

References

1.
Ilgin
,
M. A.
, and
Tasoglu Tuna
,
G.
,
2016
, “
Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101012
.
2.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2011
,
The Disassembly Line: Balancing and Modeling
,
McGraw-Hill
,
New York
.
3.
Gungor
,
A.
, and
Gupta
,
S. M.
,
2002
, “
Disassembly Line in Product Recovery
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2569
2589
.
4.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1999
, “
Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey
,”
Comput. Ind. Eng.
,
36
(
4
), pp.
811
853
.
5.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
591
.
6.
Ilgin
,
M. A.
,
Gupta
,
S. M.
, and
Battaia
,
O.
,
2015
, “
Use of MCDM Techniques in Environmentally Conscious Manufacturing and Product Recovery: State of the Art
,”
J. Manuf. Syst.
,
37
(
3
), pp.
746
758
.
7.
Ozceylan
,
E.
,
Kalayci
,
C. B.
,
Gungor
,
A.
, and
Gupta
,
S. M.
,
2018
, “
Disassembly Line Balancing Problem: A Review of the State of the Art and Future Directions
,”
Int. J. Prod. Res.
, (in press).
8.
Koc
,
A.
,
Sabuncuoglu
,
I.
, and
Erel
,
E.
,
2009
, “
Two Exact Formulations for Disassembly Line Balancing Problems With Task Precedence Diagram Construction Using an and/or Graph
,”
IIE Trans.
,
41
, pp.
866
881
.
9.
Altekin
,
F. T.
,
Kandiller
,
L.
, and
Ozdemirel
,
N. E.
,
2008
, “
Profit-Oriented Disassembly-Line Balancing
,”
Int. J. Prod. Res.
,
46
(
10
), pp.
2675
2693
.
10.
Paksoy
,
T.
,
Gungor
,
A.
,
Ozceylan
,
E.
, and
Hancilar
,
A.
,
2013
, “
Mixed Model Disassembly Line Balancing Problem With Fuzzy Goals
,”
Int. J. Prod. Res.
,
51
(
20
), pp.
6082
6096
.
11.
Ozceylan
,
E.
, and
Paksoy
,
T.
,
2013
, “
Reverse Supply Chain Optimisation With Disassembly Line Balancing
,”
Int. J. Prod. Res.
,
51
(
20
), pp.
5985
6001
.
12.
Ilgin
,
M. A.
,
Akcay
,
H.
, and
Araz
,
C.
,
2017
, “
Disassembly Line Balancing Using Linear Physical Programming
,”
Int. J. Prod. Res.
,
55
(
20
), pp.
6108
6119
.
13.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2007
, “
A Balancing Method and Genetic Algorithm for Disassembly Line Balancing
,”
Eur. J. Oper. Res.
,
179
(
3
), pp.
692
708
.
14.
Aydemir-Karadag
,
A.
, and
Turkbey
,
O.
,
2013
, “
Multi-Objective Optimization of Stochastic Disassembly Line Balancing With Station Paralleling
,”
Comput. Ind. Eng.
,
65
, pp.
413
425
.
15.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
Balancing a Sequence-Dependent Disassembly Line Using Simulated Annealing Algorithm
,”
Applications of Management Science
,
K. D.
Lawrence
and
G.
Kleinman
, eds.,
Emerald
,
Bingley, UK
, pp.
81
103
.
16.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2014
, “
A Tabu Search Algorithm for Balancing a Sequence-Dependent Disassembly Line
,”
Prod. Plann. Control
,
25
(
2
), pp.
149
160
.
17.
Agrawal
,
S.
, and
Tiwari
,
M. K.
,
2008
, “
A Collaborative Ant Colony Algorithm to Stochastic Mixed-Model U-Shaped Disassembly Line Balancing and Sequencing Problem
,”
Int. J. Prod. Res.
,
46
(
6
), pp.
1405
1429
.
18.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
Ant Colony Optimization for Sequence-Dependent Disassembly Line Balancing Problem
,”
J. Manuf. Technol. Manage.
,
24
(
3
), pp.
413
427
.
19.
Zhu
,
X.
,
Zhang
,
Z.
, and
Hu
,
J.
,
2014
, “
An Ant Colony Optimization Algorithm for Multi-Objective Disassembly Line Balancing Problem
,”
Zhongguo Jixie China Mech. Eng.
,
25
(
8
), pp.
1075
1079
.
20.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
Artificial Bee Colony Algorithm for Solving Sequence-Dependent Disassembly Line Balancing Problem
,”
Expert Syst. Appl.
,
40
(
18
), pp.
7231
7241
.
21.
Kalayci
,
C. B.
,
Hancilar
,
A.
,
Gungor
,
A.
, and
Gupta
,
S. M.
,
2015
, “
Multi-Objective Fuzzy Disassembly Line Balancing Using a Hybrid Discrete Artificial Bee Colony Algorithm
,”
J. Manuf. Syst.
,
37
(
Pt. 3
), pp.
672
682
.
22.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
River Formation Dynamics Approach for Sequence-Dependent Disassembly Line Balancing Problem
,”
Reverse Supply Chains: Issues and Analysis
,
S. M.
Gupta
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
289
312
.
23.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
A Particle Swarm Optimization Algorithm With Neighborhood-Based Mutation for Sequence-Dependent Disassembly Line Balancing Problem
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
197
209
.
24.
Gungor
,
A.
, and
Gupta
,
S. M.
,
2001
, “
A Solution Approach to the Disassembly Line Balancing Problem in the Presence of Task Failures
,”
Int. J. Prod. Res.
,
39
(
7
), pp.
1427
1467
.
25.
Tang
,
Y.
, and
Zhou
,
M.
,
2006
, “
A Systematic Approach to Design and Operation of Disassembly Lines
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
324
329
.
26.
Avikal
,
S.
,
Mishra
,
P. K.
,
Jain
,
R.
, and
Yadav
,
H. C.
,
2013
, “
A PROMETHEE Method Based Heuristic for Disassembly Line Balancing Problem
,”
Ind. Eng. Manage. Syst.
,
12
(
3
), pp.
254
263
.
27.
Avikal
,
S.
,
Mishra
,
P. K.
, and
Jain
,
R.
,
2013
, “
A Fuzzy AHP and PROMETHEE Method-Based Heuristic for Disassembly Line Balancing Problems
,”
Int. J. Prod. Res.
,
52
(
5
), pp.
1306
1317
.
28.
Gabus
,
A.
, and
Fontela
,
E.
,
1972
, “
World Problems, an Invitation to Further Thought Within the Framework of DEMATEL
,” Battelle Geneva Research Center, Geneva, Switzerland.
29.
Gabus
,
A.
, and
Fontela
,
E.
,
1973
, “
Perceptions of the World Problematique: Communication Procedure, Communicating With Those Bearing Collective Responsibility
,” Battelle Geneva Research Centre, Geneva, Switzerland.
30.
Ranjan
,
R.
,
Chatterjee
,
P.
, and
Chakraborty
,
S.
,
2016
, “
Performance Evaluation of Indian Railway Zones Using DEMATEL and VIKOR Methods
,”
Benchmarking: Int. J.
,
23
(
1
), pp.
78
95
.
31.
Shieh
,
J.-I.
,
Wu
,
H.-H.
, and
Huang
,
K.-K.
,
2010
, “
A DEMATEL Method in Identifying Key Success Factors of Hospital Service Quality
,”
Knowl.-Based Syst.
,
23
(
3
), pp.
277
282
.
32.
Ranjan
,
R.
,
Chatterjee
,
P.
, and
Chakraborty
,
S.
,
2015
, “
Evaluating Performance of Engineering Departments in an Indian University Using DEMATEL and Compromise Ranking Methods
,”
OPSEARCH
,
52
(
2
), pp.
307
328
.
33.
Hsu
,
C.-W.
,
Kuo
,
T.-C.
,
Chen
,
S.-H.
, and
Hu
,
A. H.
,
2013
, “
Using DEMATEL to Develop a Carbon Management Model of Supplier Selection in Green Supply Chain Management
,”
J. Cleaner Prod.
,
56
, pp.
164
172
.
34.
Buyukozkan
,
G.
, and
Ciftci
,
G.
,
2012
, “
A Novel Hybrid MCDM Approach Based on Fuzzy DEMATEL, Fuzzy ANP and Fuzzy TOPSIS to Evaluate Green Suppliers
,”
Expert Syst. Appl.
,
39
(
3
), pp.
3000
3011
.
35.
Bakeshlou
,
E. A.
,
Khamseh
,
A. A.
,
Asl
,
M. A. G.
,
Sadeghi
,
J.
, and
Abbaszadeh
,
M.
,
2017
, “
Evaluating a Green Supplier Selection Problem Using a Hybrid MODM Algorithm
,”
J. Intell. Manuf.
,
28
(
4
), pp.
913
927
.
36.
Fu
,
X.
,
Zhu
,
Q.
, and
Sarkis
,
J.
,
2012
, “
Evaluating Green Supplier Development Programs at a Telecommunications Systems Provider
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
357
367
.
37.
Zhu
,
Q.
,
Sarkis
,
J.
, and
Lai
,
K.-H.
,
2014
, “
Supply Chain-Based Barriers for Truck-Engine Remanufacturing in China
,”
Transp. Res., Part E
,
68
, pp.
103
117
.
38.
Shaik
,
M. N.
, and
Abdul-Kader
,
W.
,
2014
, “
Comprehensive Performance Measurement and Causal-Effect Decision Making Model for Reverse Logistics Enterprise
,”
Comput. Ind. Eng.
,
68
, pp.
87
103
.
39.
Rahman
,
S.
, and
Subramanian
,
N.
,
2012
, “
Factors for Implementing End-of-Life Computer Recycling Operations in Reverse Supply Chains
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
239
248
.
40.
Si
,
S.-L.
,
You
,
X.-Y.
,
Liu
,
H.-C.
, and
Zhang
,
P.
,
2018
, “
DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications
,”
Math. Probl. Eng.
,
2018
, p.
3696457
.
41.
Elsayed
,
E. A.
, and
Boucher
,
T. O.
,
1994
,
Analysis and Control of Production Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
42.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2003
, “
2-opt Heuristic for the Disassembly Line Balancing Problem
,”
Environmentally Conscious Manufacturing III, Providence
, RI, pp.
71
84
.
43.
Kondo
,
Y.
,
Deguchi
,
K.
,
Hayashi
,
Y.-I.
, and
Obata
,
F.
,
2003
, “
Reversibility and Disassembly Time of Part Connection
,”
Resour. Conserv. Recycl.
,
38
(
3
), pp.
175
184
.
44.
Papakostas
,
N.
,
Pintzos
,
G.
, and
Triantafyllou
,
C.
,
2015
, “
Computer-Aided Design Assessment of Products for End of Life Separation and Material Handling
,”
CIRP Ann.
,
64
(
1
), pp.
185
188
.
45.
Mandolini
,
M.
,
Favi
,
C.
,
Germani
,
M.
, and
Marconi
,
M.
,
2018
, “
Time-Based Disassembly Method: How to Assess the Best Disassembly Sequence and Time of Target Components in Complex Products
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
409
430
.
You do not currently have access to this content.