Vacuum-assisted resin transfer molding (VARTM) has several inherent shortcomings such as long mold filling times, low fiber volume fraction, and high void content in fabricated laminates. These problems in VARTM mainly arise from the limited compaction of the laminate and low resin pressure. Pressurized infusion (PI) molding introduced in this paper overcomes these disadvantages by (i) applying high compaction pressure on the laminate by an external pressure chamber placed on the mold and (ii) increasing the resin pressure by pressurizing the inlet resin reservoir. The effectiveness of PI molding was verified by fabricating composite laminates at various levels of chamber and inlet pressures and investigating the effect of these parameters on the fill time, fiber volume fraction, and void content. Furthermore, spatial distribution of voids was characterized by employing a unique method, which uses a flatbed scanner to capture the high-resolution planar scan of the fabricated laminates. The results revealed that PI molding reduced fill time by 45%, increased fiber volume fraction by 16%, reduced void content by 98%, improved short beam shear (SBS) strength by 14%, and yielded uniform spatial distribution of voids compared to those obtained by conventional VARTM.

References

1.
Hsiao
,
K.-T.
, and
Heider
,
D.
,
2012
, “
Vacuum Assisted Resin Transfer Molding (VARTM) in Polymer Matrix Composites
,”
Manufacturing Techniques for Polymer Matrix Composites (PMCs)
,
Woodhead Publishing Limited
, Sawston, UK.
2.
Advani
,
S. G.
, and
Sozer
,
E. M.
,
2010
,
Process Modeling in Composites Manufacturing
,
Taylor & Francis
,
London
.
3.
Sas
,
H. S.
,
Simacek
,
P.
, and
Advani
,
S. G.
,
2015
, “
A Methodology to Reduce Variability During Vacuum Infusion With Optimized Design of Distribution Media
,”
Composites, Part A
,
78
, pp.
223
233
.
4.
Kuentzer
,
N.
,
Simacek
,
P.
,
Advani
,
S. G.
, and
Walsh
,
S.
,
2007
, “
Correlation of Void Distribution to VARTM Manufacturing Techniques
,”
Composites, Part A
,
38
(
3
), pp.
802
813
.
5.
Sayre
,
J. R.
, and
Loos
,
A. C.
,
2003
, “
Resin Infusion of Triaxially Braided Preforms With Through-the-Thickness Reinforcement
,”
Polym. Compos.
,
24
(
2
), pp.
229
236
.
6.
Seemann
,
W.
,
1990
, “
Plastic Transfer Molding Techniques for the Production of Fiber Reinforced Plastic Structures
,” U.S. Patent No.
4902215
.https://patents.google.com/patent/US4902215
7.
Kedari
,
V. R.
,
Farah
,
B. I.
, and
Hsiao
,
K.-T.
,
2011
, “
Effects of Vacuum Pressure, Inlet Pressure, and Mold Temperature on the Void Content, Volume Fraction of Polyester/e-Glass Fiber Composites Manufactured With VARTM Process
,”
J. Compos. Mater.
,
45
(
26
), pp.
2727
2742
.
8.
Allende
,
M.
,
Mohan
,
R. V.
, and
Walsh
,
S. M.
,
2004
, “
Experimental and Numerical Analysis of Flow Behavior in the FASTRAC Liquid Composite Manufacturing Process
,”
Polym. Compos.
,
25
(
4
), pp.
384
396
.
9.
Alms
,
J. B.
,
Advani
,
S. G.
, and
Glancey
,
J. L.
,
2011
, “
Liquid Composite Molding Control Methodologies Using Vacuum Induced Preform Relaxation
,”
Composites, Part A
,
42
(
1
), pp.
57
65
.
10.
Alms
,
J.
, and
Advani
,
S. G.
,
2007
, “
Simulation and Experimental Validation of Flow Flooding Chamber Method of Resin Delivery in Liquid Composite Molding
,”
Composites, Part A
,
38
(
10
), pp.
2131
2141
.
11.
Ricciardi
,
M. R.
,
Antonucci
,
V.
,
Durante
,
M.
,
Giordano
,
M.
,
Nele
,
L.
,
Starace
,
G.
, and
Langella
,
A.
,
2013
, “
A New Cost-Saving Vacuum Infusion Process for Fiber-Reinforced Composites: Pulsed Infusion
,”
J. Compos. Mater.
,
48
(
11
), pp.
1365
1373
.
12.
Kaynak
,
C.
, and
Kas
,
Y. O.
,
2006
, “
Effects of Injection Pressure in Resin Transfer Moulding (RTM) of Woven Carbon Fibre/Epoxy Composites
,”
Polym. Polym. Compos.
,
14
(
1
), pp.
55
64
.
13.
Bodaghi
,
M.
,
Cristóvão
,
C.
,
Gomes
,
R.
, and
Correia
,
N. C.
,
2016
, “
Experimental Characterization of Voids in High Fibre Volume Fraction Composites Processed by High Injection Pressure RTM
,”
Composites, Part A
,
82
, pp.
88
99
.
14.
Yenilmez
,
B.
,
Senan
,
M.
, and
Sozer
,
E. M.
,
2009
, “
Variation of Part Thickness and Compaction Pressure in Vacuum Infusion Process
,”
Compos. Sci. Technol.
,
69
(
11–12
), pp.
1710
1719
.
15.
Correia
,
N. C.
,
Robitaille
,
F.
,
Long
,
A. C.
,
Rudd
,
C. D.
,
Simacek
,
P.
, and
Advani
,
S. G.
,
2005
, “
Analysis of the Vacuum Infusion Moulding Process—Part I: Analytical Formulation
,”
Composites, Part A
,
36
(
12
), pp.
1645
1656
.
16.
Yalcinkaya
,
M. A.
,
Caglar
,
B.
, and
Sozer
,
E. M.
,
2017
, “
Effect of Permeability Characterization at Different Boundary and Flow Conditions on Vacuum Infusion Process Modeling
,”
J. Reinf. Plast. Compos.
,
36
(
7
), pp.
491
504
.
17.
Govignon
,
Q.
,
Bickerton
,
S.
, and
Kelly
,
P. A.
,
2010
, “
Simulation of the Reinforcement Compaction and Resin Flow During the Complete Resin Infusion Process
,”
Composites, Part A
,
41
(
1
), pp.
45
57
.
18.
Tackitt
,
K. D.
, and
Walsh
,
S. M.
,
2005
, “
Experimental Study of Thickness Gradient Formation in the VARTM Process
,”
Mater. Manuf. Process.
,
20
(
4
), pp.
607
627
.
19.
Caglar
,
B.
,
Yenilmez
,
B.
, and
Sozer
,
E. M.
,
2015
, “
Modeling of Post-Filling Stage in Vacuum Infusion Using Compaction Characterization
,”
J. Compos. Mater.
,
49
(
16
), pp.
1947
1960
.
20.
Simacek
,
P.
,
Eksik
,
O.
,
Heider
,
D.
,
Gillespie
,
J. W.
, and
Advani
,
S.
,
2012
, “
Experimental Validation of Post-Filling Flow in Vacuum Assisted Resin Transfer Molding Processes
,”
Composites, Part A
,
43
(
3
), pp.
370
380
.
21.
Robinson
,
M. J.
, and
Kosmatka
,
J. B.
,
2013
, “
Analysis of the Post-Filling Phase of the Vacuum-Assisted Resin Transfer Molding Process
,”
J. Compos. Mater.
,
48
(
13
), pp.
1547
1559
.
22.
Chen
,
D.
,
Arakawa
,
K.
, and
Uchino
,
M.
,
2016
, “
Effects of the Addition of a Cover Mold on Resin Flow and the Quality of the Finished Product in Vacuum-Assisted Resin Transfer Molding
,”
Polym. Compos.
,
37
(
5
), pp.
1435
1442
.
23.
Pishvar
,
M.
,
Amirkhosravi
,
M.
, and
Altan
,
M. C.
,
2017
, “
Magnet Assisted Composite Manufacturing: A Novel Fabrication Technique for High-Quality Composite Laminates
,”
Polym. Compos.
(epub).
24.
Amirkhosravi
,
M.
,
Pishvar
,
M.
, and
Altan
,
M. C.
,
2017
, “
Improving Laminate Quality in Wet Lay-Up/Vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM)
,”
Composites, Part A
,
98
, pp.
227
237
.
25.
Pishvar
,
M.
,
Amirkhosravi
,
M.
, and
Altan
,
M. C.
,
2018
, “
Magnet Assisted Composite Manufacturing: A Flexible New Technique for Achieving High Consolidation Pressure in Vacuum Bag/Lay-Up Processes
,”
J. Vis. Exp.
,
135
, p. e57254.
26.
Amirkhosravi
,
M.
,
Pishvar
,
M.
, and
Cengiz Altan
,
M.
,
2018
, “
Fabricating High-Quality VARTM Laminates by Magnetic Consolidation: Experiments and Process Model
,”
Composites, Part A
,
114
, pp.
398
406
.
27.
Garofalo
,
J.
,
Walczyk
,
D.
, and
Kuppers
,
J.
,
2017
, “
Rapid Consolidation and Curing of Vacuum-Infused Thermoset Composite Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021010
.
28.
Causse
,
P.
,
Ruiz
,
E.
, and
Trochu
,
F.
,
2011
, “
Experimental Study of Flexible Injection to Manufacture Parts of Strong Curvature
,”
Polym. Compos.
,
32
(
6
), pp.
882
895
.
29.
Yalcinkaya
,
M. A.
,
Sozer
,
E. M.
, and
Altan
,
M. C.
,
2017
, “
Fabrication of High Quality Composite Laminates by Pressurized and Heated-VARTM
,”
Composites, Part A
,
102
, pp.
336
346
.
30.
Yalcinkaya
,
M. A.
,
Sozer
,
E.
, and
Altan
,
M. C.
,
2018
, “
Effect of External Pressure to Enhance Laminate Quality and Reduce Process-Induced Voids in Heated-VARTM
,”
Composites, Part A
(under review).
31.
Yalcinkaya
,
M.
,
Sozer
,
E.
, and
Altan
,
M.
,
2018
, “
Dynamic Pressure Control in VARTM: Rapid Fabrication of Laminates With High Fiber Volume Fraction and Improved Dimensional Uniformity
,” Polym. Compos. (in press).
32.
Chang
,
C.-Y.
,
2012
, “
Experimental Analysis of Mold Filling in Vacuum Assisted Compression Resin Transfer Molding
,”
J. Reinf. Plast. Compos.
,
31
(
23
), pp.
1630
1637
.
33.
Zhu
,
H.
,
Wu
,
B.
,
Li
,
D.
,
Zhang
,
D.
, and
Chen
,
Y.
,
2011
, “
Influence of Voids on the Tensile Performance of Carbon/Epoxy Fabric Laminates
,”
J. Mater. Sci. Technol.
,
27
(
1
), pp.
69
73
.
34.
Maragoni
,
L.
,
Carraro
,
P. A.
, and
Quaresimin
,
M.
,
2016
, “
Effect of Voids on the Crack Formation in a [45/−45/0]s Laminate Under Cyclic Axial Tension
,”
Composites, Part A
,
91
, pp.
493
500
.
35.
Dong
,
C.
,
2016
, “
Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites
,”
J. Mater. Sci. Technol.
,
32
(
7
), pp.
597
604
.
36.
Lambert
,
J.
,
Chambers
,
A. R.
,
Sinclair
,
I.
, and
Spearing
,
S. M.
,
2012
, “
3D Damage Characterisation and the Role of Voids in the Fatigue of Wind Turbine Blade Materials
,”
Compos. Sci. Technol.
,
72
(
2
), pp.
337
343
.
37.
Costa
,
M. L.
,
Rezende
,
M. C.
, and
de Almeida
,
S. F. M.
,
2006
, “
Effect of Void Content on the Moisture Absorption in Polymeric Composites
,”
Polym. Plast. Technol. Eng.
,
45
(
6
), pp.
691
698
.
38.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
,
2004
, “
Formation of Microscopic Voids in Resin Transfer Molded Composites
,”
ASME J. Eng. Mater. Technol.
,
126
(
4
), pp.
420
426
.
39.
Park
,
C. H.
,
Lebel
,
A.
,
Saouab
,
A.
,
Bréard
,
J.
, and
Lee
,
W. I.
,
2011
, “
Modeling and Simulation of Voids and Saturation in Liquid Composite Molding Processes
,”
Composites, Part A
,
42
(
6
), pp.
658
668
.
40.
Chen
,
D.
,
Arakawa
,
K.
, and
Xu
,
C.
,
2015
, “
Reduction of Void Content of Vacuum-Assisted Resin Transfer Molded Composites by Infusion Pressure Control
,”
Polym. Compos.
,
36
(
9
), pp.
1629
1637
.
41.
Michaud
,
V.
,
2016
, “
A Review of Non-Saturated Resin Flow in Liquid Composite Moulding Processes
,”
Transp. Porous Media
,
115
(3), pp. 581–601.
42.
Leclerc
,
J. S.
, and
Ruiz
,
E.
,
2008
, “
Porosity Reduction Using Optimized Flow Velocity in Resin Transfer Molding
,”
Composites, Part A
,
39
(
12
), pp.
1859
1868
.
43.
Olivero
,
K. A.
,
Barraza
,
H. J.
,
O'Rear
,
E. A.
, and
Altan
,
M. C.
,
2002
, “
Effect of Injection Rate and Post-Fill Cure Pressure on Properties of Resin Transfer Molded Disks
,”
J. Compos. Mater.
,
36
(
16
), pp.
2011
2028
.
44.
Hamidi
,
Y. K.
, and
Altan
,
M. C.
,
2017
, “
Process Induced Defects in Liquid Molding Processes of Composites
,”
Int. Polym. Process.
,
32
(
5
), pp.
527
544
.
45.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
,
2005
, “
Effect of Packing on Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
Polym. Compos.
,
26
(
5
), pp.
614
627
.
46.
Stadtfeld
,
H.
,
Erninger
,
M.
,
Bickerton
,
S.
, and
Advani
,
S. G.
,
2002
, “
An Experimental Method to Continuously Measure Permeability of Fiber Preforms as a Function of Fiber Volume Fraction
,”
J. Reinf. Plast. Compos.
,
21
(
11
), pp.
879
899
.
47.
Salvatori
,
D.
,
Caglar
,
B.
,
Teixidó
,
H.
, and
Michaud
,
V.
,
2018
, “
Permeability and Capillary Effects in a Channel-Wise Non-Crimp Fabric
,”
Composites, Part A
,
108
, pp.
41
52
.
48.
Yalcinkaya
,
M. A.
,
Sarioglu
,
A.
, and
Sozer
,
E. M.
,
2015
, “
A Novel Mold Design for One-Continuous Permeability Measurement of Fiber Preforms
,”
J. Reinf. Plast. Compos.
,
34
(
11
), pp.
915
930
.
49.
Arbter
,
R.
,
Beraud
,
J. M.
,
Binetruy
,
C.
,
Bizet
,
L.
,
Bréard
,
J.
,
Comas-Cardona
,
S.
,
Demaria
,
C.
,
Endruweit
,
A.
,
Ermanni
,
P.
,
Gommer
,
F.
,
Hasanovic
,
S.
,
Henrat
,
P.
,
Klunker
,
F.
,
Laine
,
B.
,
Lavanchy
,
S.
,
Lomov
,
S. V.
,
Long
,
A.
,
Michaud
,
V.
,
Morren
,
G.
,
Ruiz
,
E.
,
Sol
,
H.
,
Trochu
,
F.
,
Verleye
,
B.
,
Wietgrefe
,
M.
,
Wu
,
W.
, and
Ziegmann
,
G.
,
2011
, “
Experimental Determination of the Permeability of Textiles: A Benchmark Exercise
,”
Composites, Part A
,
42
(
9
), pp.
1157
1168
.
50.
Vernet
,
N.
,
Ruiz
,
E.
,
Advani
,
S.
,
Alms
,
J. B.
,
Aubert
,
M.
,
Barburski
,
M.
,
Barari
,
B.
,
Beraud
,
J. M.
,
Berg
,
D. C.
,
Correia
,
N.
,
Danzi
,
M.
,
Delavière
,
T.
,
Dickert
,
M.
,
Di Fratta
,
C.
,
Endruweit
,
A.
,
Ermanni
,
P.
,
Francucci
,
G.
,
Garcia
,
J. A.
,
George
,
A.
,
Hahn
,
C.
,
Klunker
,
F.
,
Lomov
,
S. V.
,
Long
,
A.
,
Louis
,
B.
,
Maldonado
,
J.
,
Meier
,
R.
,
Michaud
,
V.
,
Perrin
,
H.
,
Pillai
,
K.
,
Rodriguez
,
E.
,
Trochu
,
F.
,
Verheyden
,
S.
,
Wietgrefe
,
M.
,
Xiong
,
W.
,
Zaremba
,
S.
, and
Ziegmann
,
G.
,
2014
, “
Experimental Determination of the Permeability of Engineering Textiles: Benchmark II
,”
Composites, Part A
,
61
, pp.
172
184
.
51.
Centea
,
T.
, and
Hubert
,
P.
,
2013
, “
Out-of-Autoclave Prepreg Consolidation Under Deficient Pressure Conditions
,”
J. Compos. Mater.
,
48
(
16
), pp.
2033
2045
.
52.
Almeida
,
M. D.
,
Cerqueira
,
M.
, and
Leali
,
M.
,
2001
, “
The Influence of Porosity on the Interlaminar Shear Strength of Carbon/Epoxy and Carbon/Bismaleimide Fabric Laminates
,”
Compos. Sci. Technol.
,
61
(
14
), pp.
2101
2108
.
53.
Wisnom
,
M. R.
,
Reynolds
,
T.
, and
Gwilliam
,
N.
,
1996
, “
Reduction in Interlaminar Shear Strength by Discrete and Distributed Voids
,”
Compos. Sci. Technol.
,
56
(
1
), pp.
93
101
.
54.
Hernandez
,
S.
,
Sket
,
F.
,
Molina-Aldareguia
,
J. M.
,
Gonzalez
,
C.
, and
LLorca
,
J.
,
2011
, “
Effect of Curing Cycle on Void Distribution and Interlaminar Shear Strength in Polymer-Matrix Composites
,”
Compos. Sci. Technol.
,
71
(
10
), pp.
1331
1341
.
55.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
,
2005
, “
Three-Dimensional Features of Void Morphology in Resin Transfer Molded Composites
,”
Compos. Sci. Technol.
,
65
(
7–8
), pp.
1306
1320
.
56.
Paciornik
,
S.
, and
D'Almeida
,
J. R. M.
,
2008
, “
Measurement of Void Content and Distribution in Composite Materials Through Digital Microscopy
,”
J. Compos. Mater.
,
43
(
2
), pp.
101
112
.
57.
Kardos
,
J.
,
Duduković
,
M.
, and
Dave
,
R.
,
1986
, “
Void Growth and Resin Transport During Processing of Thermosetting—Matrix Composites
,”
Adv. Polym. Sci.
,
80
, pp.
101
123
.
58.
Costa
,
M. L.
,
de Almeida
,
S. F. M.
, and
Rezende
,
M. C.
,
2005
, “
Critical Void Content for Polymer Composite Laminates
,”
AIAA J.
,
43
(
6
), pp.
1336
1341
.
59.
Bowles
,
K. J.
, and
Frimpong
,
S.
,
1992
, “
Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites
,”
J. Compos. Mater.
,
26
(
10
), pp.
1487
1509
.
60.
Abraham
,
D.
,
Matthews
,
S.
, and
McIlhagger
,
R.
,
1998
, “
A Comparison of Physical Properties of Glass Fibre Epoxy Composites Produced by Wet Lay-Up With Autoclave Consolidation and Resin Transfer Moulding
,”
Composites, Part A
,
29
(
7
), pp.
795
801
.
61.
Carraro
,
P. A.
,
Maragoni
,
L.
, and
Quaresimin
,
M.
,
2015
, “
Influence of Manufacturing Induced Defects on Damage Initiation and Propagation in Carbon/Epoxy NCF Laminates
,”
Adv. Manuf. Polym. Compos. Sci.
,
1
(
1
), pp.
44
53
.
You do not currently have access to this content.