In this paper, an innovative approach for the description of the functional properties of a grinding wheel surface is discussed. First, the state of the art in the description of grinding wheel topographies is summarized. Furthermore, the fundamentals for a new approach for the quantitative description of grinding wheel topographies are provided. In order to analyze the functional properties of a grinding wheel's topography depending on its specification, grinding experiments were carried out. For the experimental investigations vitrified, synthetic resin bonded and electroplated grinding wheels with varied compositions were analyzed. During the experiments, the topographies of the investigated grinding wheels have been analyzed by means of the topotool in detail. The developed software tool allows a detailed description of the kinematic cutting edges depending on the grinding process parameters and the grinding wheel specification. In addition to the calculation of the number of kinematic cutting edges and the area per cutting edge, a differentiation of the cutting edge areas in normal and tangential areas of the grinding wheel's circumferential direction is implemented. Furthermore, the topotool enables to analyze the kinematic cutting edges shape by calculating the angles of the grain in different directions. This enables a detailed analysis and a quantitative comparison of grinding wheel topographies related to different grinding wheel specifications. In addition, the influence of the dressing process and wear conditions to the grinding wheel topography can be evaluated. The new approach allows a better characterization of the contact conditions between grinding wheel and workpiece. Hence, the impact of a specific topography on the grinding process behavior, the generated grinding energy distribution, and the grinding result can be revealed.

References

1.
Sander
,
T.
, and
Wartzack
,
S.
,
2011
, “
Anforderungen an technische Oberflächen und die Herausforderungen für den Produktentwickler
,”
22nd Symposium Design for X
, pp.
141
152
.
2.
Klocke
,
F.
, and
Linke
,
B.
,
2008
, “
Mechanisms in the Generation of Grinding Wheel Topography by Dressing
,”
WGP Ann. Ger. Acad. Soc. Prod. Eng.
,
2
(
2
), pp.
157
163
.
3.
Stuff
,
D.
,
1996
, “
Einsatzvorbereitung Keramisch Gebundener CBN-Schleifscheiben
,” Ph.D. thesis, RWTH Aachen University, Aachen, Germany.
4.
Marinescu
,
I. D.
, and
Hitchiner
,
M.
,
2007
,
Handbook of Machining With Grinding Wheels
,
CRC Press
,
Boca Raton, FL
.
5.
Hübert
,
C.
, Mauren, F., van der Meer, M., Hahmann, D., Rickens, K., Multugünes, Y., Hahmann, W. C., and Pekarek, M.,
2009
, “
Charakterisierung von Schleifscheibentopographien aus fertigungstechnischer Sicht
,”
Diamant Hochschulwerkzeuge
,
4
, pp.
40
47
.
6.
Pahlitzsch
,
G.
, and
Appun
,
J.
,
1953
, “
Einfluss der Abrichtbedingungen auf Schleifvorgang und Schleifergebnis beim Rundschleifen
,”
Werkstatttechnik Maschinenbau
,
43
(
9
), pp.
39
43
.
7.
Paucksch
,
E.
,
Holsten
,
S.
,
Linß
,
M.
, and
Tikal
,
F.
,
2008
,
Zerspantechnik: Prozesse, Werkzeuge, Technologien
, 12th ed., Springer, Vieweg + Teubner Verlag, Wiesbaden, Germany.
8.
Brinksmeier
,
E.
, and
Werner
,
F.
,
1992
, “
Monitoring of Grinding Wheel Wear
,”
Ann. CIRP
,
41
(
1
), pp.
373
376
.
9.
Tönshoff
,
H. K.
,
Karpuschewski
,
B.
,
Andrae
,
P.
, and
Türich
,
A.
,
1998
, “
Grinding Performance of Superhard Abrasive Wheels, Final Report Concerning CIRP Co-Operative Work in STC “G”
,”
Ann. CIRP
,
47
(
2
), pp.
723
732
.
10.
Duscha
,
M.
,
Klocke
,
F.
,
Wegner
,
H.
, and
Gröning
,
H.
,
2009
, “
Erfassung und Charakterisierung der Schleifscheibentopographie für die anwendungsgerechte Prozessauslegung—Part 2
,”
Diamond Bus.
,
28
(
2
), pp.
28
33
.
11.
Kassen
,
G.
, and
Werner
,
G.
,
1969
, “
Kinematische Kenngrößen des Schleifvorganges
,”
Industrieanzeiger
,
91
(
87
), pp.
2087
2090
.
12.
Brinksmeier
,
E.
, Aurich, J. C., Govekar, E., Heinzel, C., Hoffmeister, H.-W., Klocke, F., Peters, J., Rentsch, R., Stephenson, D. J., Uhlmann, E., Weinert, K., and Wittmann, M.,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
Ann. CIRP
,
55
(
2
), pp.
667
696
.
13.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2006
, “
A Survey of Recent Grinding Wheel Topography Models
,”
Int. J. Mach. Tools Manuf.
,
46
(3–4), pp.
343
352
.
14.
Denkena
,
B.
,
Köhler
,
J.
, and
Kästner
,
J.
,
2012
, “
Chip Formation in Grinding: An Experimental Study
,”
Prod. Eng. Res. Dev.
,
6
(
2
), pp.
107
115
.
15.
Blunt
,
L.
, and
Ebdon
,
S.
,
1996
, “
The Application of Three-Dimensional Surface Measurement Techniques to Characterizing Grinding Wheel Topography
,”
Int. J. Mach. Tools Manuf.
,
36
(
11
), pp.
1207
1226
.
16.
Rasim
,
M.
,
Klocke
,
F.
, and
Mattfeld
,
P.
,
2014
, “
Energy Model for Grinding Processes
,”
Thermo-Energetic Design of Machine Tools
(A Systemic Approach to Solve the Conflict Between Power Efficiency, Accuracy and Productivity Demonstrated at the Example of Machining Production), Springer International Publishing, Cham, Switzerland, pp.
35
48
.
You do not currently have access to this content.