The flow stress in the high-speed machining of titanium alloys depends strongly on the microstructural state of the material which is defined by the composition of the material, its starting microstructure, and the thermomechanical loads imposed during the machining process. In the past, researchers have determined the flow stress empirically as a function of mechanical state parameters, such as strain, strain rate, and temperature while ignoring the changes in the microstructural state such as phase transformations. This paper presents a microstructure-sensitive flow stress model based on the self-consistent method (SCM) that includes the effects of chemical composition, α phase and β phase, as well mechanical state imposed. This flow stress is developed to model the flow behavior of titanium alloys in machining at speed of higher than 5 m/s, characterized by extremely high strains (2–10 or higher), high strain rates (104–106 s−1 or higher), and high temperatures (600–1300 °C). The flow stress sensitivity to mechanical and material parameters is analyzed. A new SCM-based Johnson–Cook (JC) flow stress model is proposed whose constants and ranges are determined using experimental data from literature and the physical basis for SCM approach. This new flow stress is successfully implemented in the finite-element (FE) framework to simulate machining. The predicted results confirm that the new model is much more effective and reliable than the original JC model in predicting chip segmentation in the high-speed machining of titanium Ti–6Al–4V alloy.

References

1.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
,
The Hague
,
The Netherlands
, pp.
541
547
.
2.
Johnson
,
G. R.
,
1981
, “
Dynamic Analysis of a Torsion Test Specimen Including Heat Conduction and Plastic Flow
,”
ASME J. Eng. Mater. Technol.
,
103
(
3
), pp.
201
206
.
3.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 1: Ductile Metals
,”
ASME J. Eng. Mater. Technol.
,
105
(
1
), pp.
42
47
.
4.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 2: Less Ductile Metals
,”
ASME J. Eng. Mater. Technol.
,
105
(
1
), pp.
48
53
.
5.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng. A
,
241
(1–2), pp.
48
59
.
6.
Khan
,
A. S.
,
Suh
,
Y. S.
, and
Kazmi
,
R.
,
2004
, “
Quasi-Static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys
,”
Int. J. Plast.
,
20
(
12
), pp.
2233
2248
.
7.
Khan
,
A. S.
,
Kazmi
,
R.
, and
Farrokh
,
B.
,
2007
, “
Multiaxial and Non-Proportional Loading Responses, Anisotropy and Modeling of Ti-6Al-4V Titanium Alloy Over Wide Ranges of Strain Rates and Temperatures
,”
Int. J. Plast.
,
23
(
6
), pp.
931
950
.
8.
Liu
,
R.
,
Melkote
,
S.
,
Pucha
,
R.
,
Morehouse
,
J.
,
Man
,
X. L.
, and
Marusich
,
T.
,
2013
, “
An Enhanced Constitutive Material Model for Machining of Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2238
2246
.
9.
Gente
,
A.
,
Hoffmeister
,
H. W.
, and
Evans
,
C. J.
,
2001
, “
Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
49
52
.
10.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
11.
Rahman
,
M.
,
Wang
,
Z. G.
, and
Wong
,
Y. S.
,
2006
, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J. Ser. C
,
49
(
1
), pp.
11
20
.
12.
Sun
,
J.
, and
Guo
,
Y. B.
,
2009
, “
Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
41
(
7–8
), pp.
651
659
.
13.
Ye
,
G. G.
,
Xue
,
S. F.
,
Jiang
,
M. Q.
,
Tong
,
X. H.
, and
Dai
,
L. H.
,
2013
, “
Modeling Periodic Adiabatic Shear Band Evolution During High Speed Machining Ti-6Al-4V Alloy
,”
Int. J. Plast.
,
40
(
1
), pp.
39
55
.
14.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behavior in Metal Cutting: Strains, Strain Rates and Temperatures in Chip Formation
,”
J. Mater. Process. Technol.
,
121
(
1
), pp.
123
135
.
15.
Andrade
,
U.
,
Meyers
,
M. A.
,
Vecchio
,
K. S.
, and
Chokshi
,
A. H.
,
1994
, “
Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic Deformation of Copper
,”
Acta Metall. Mater.
,
42
(
9
), pp.
3183
3195
.
16.
Sartkulvanich
,
P.
,
Koppka
,
F.
, and
Altan
,
T.
,
2004
, “
Determination of Flow Stress for Metal Cutting Simulation—A Progress Report
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
61
71
.
17.
Hammer
,
J. T.
,
2012
, “
Plastic Deformation and Ductile Fracture of Ti-6Al-4V Under Various Loading Conditions
,”
M.S. thesis
, The Ohio State University, Columbus, OH.
18.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
.
19.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
,
103
(
1
), pp.
33
51
.
20.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
21.
Semiatin
,
S. L.
, and
Rao
,
S. B.
,
1983
, “
Shear Localization During Metal Cutting
,”
J. Mater. Sci. Eng.
,
61
(
2
), pp.
185
192
.
22.
Ma
,
W.
,
Li
,
X. W.
,
Dai
,
L. H.
, and
Ling
,
Z.
,
2012
, “
Instability Criterion of Materials in Combined Stress States and Its Application to Orthogonal Cutting Process
,”
Int. J. Plast.
,
30–31
(
3
), pp.
18
40
.
23.
Umbrello
,
D.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.
24.
Arrazola
,
P. J.
,
Barbero
,
O.
, and
Urresti
,
I.
,
2010
, “
Influence of Material Parameters on Serrated Chip Prediction in Finite Element Modeling of Chip Formation Process
,”
Int. J. Mater. Forming
,
3
(
1
), pp.
519
522
.
25.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
, I
. S.
,
2013
, “
Recent Advances in Modeling of Metal Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
695
718
.
26.
Molinari
,
A.
,
Soldani
,
X.
, and
Miguélez
,
M. H.
,
2013
, “
Adiabatic Shear Banding and Scaling Law in Chip Formation With Application to Cutting of Ti-6Al-4V
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2331
2359
.
27.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Woodbury
,
K. A.
,
2006
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
749
759
.
28.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
29.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2010
, “
Numerical Simulation of Titanium Alloy Dry Machining With a Strain Softening Constitutive Law
,”
Mach. Sci. Technol.
,
14
(
2
), pp.
244
257
.
30.
Anurag
,
S.
, and
Guo
,
Y. B.
,
2007
, “
A Modified Micromechanical Approach to Determine Flow Stress of Work Materials Experiencing Complex Deformation Histories in Manufacturing Processes
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
909
918
.
31.
Karpat
,
Y.
,
2010
, “
A Modified Material Model for the Finite Element Simulation of Machining Titanium Alloy Ti-6Al-4V
,”
Mach. Sci. Technol.
,
14
(
3
), pp.
390
410
.
32.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
33.
Bammann
,
D. J.
,
1990
, “
Modeling Temperature and Strain Rate Dependent Large Deformation of Metals
,”
ASME Appl. Mech. Rev.
,
43
(
5S
), pp.
S312
S319
.
34.
Khan
,
A. S.
, and
Huang
,
S. J.
,
1992
, “
Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5-104 s−1
,”
Int. J. Plast.
,
8
(
4
), pp.
397
424
.
35.
Khan
,
A. S.
, and
Liang
,
R. Q.
,
1999
, “
Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling
,”
Int. J. Plast.
,
15
(
10
), pp.
1089
1109
.
36.
Bäker
,
M.
,
2003
, “
The Influence of Plastic Properties on Chip Formation
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
556
562
.
37.
Rhim
,
S. H.
, and
Oh
,
S. I.
,
2006
, “
Prediction of Serrated Chip Formation in Metal Cutting Process With New Flow Stress Model for AISI 1045 Steel
,”
J. Mater. Process. Technol.
,
171
(
3
), pp.
141
146
.
38.
Shi
,
J.
, and
Liu
,
C. R.
,
2006
, “
On Predicting Chip Morphology and Phase Transformation in Hard Machining
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
645
654
.
39.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.
40.
Nemat-Nasser
,
S.
,
Guo
,
W. G.
, and
Cheng
,
J. Y.
,
1999
, “
Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium
,”
Acta Mater.
,
47
(
13
), pp.
3705
3720
.
41.
Nemat-Nasser
,
S.
,
Li
,
Y. F.
, and
Isaacs
,
J. B.
,
1994
, “
Experimental Computational Evaluation of Flow Stress at High Strain Rates With Application to Adiabatic Shear Banding
,”
Mech. Mater.
,
17
(
2–3
), pp.
111
134
.
42.
Nemat-Nasser
,
S.
, and
Isaacs
,
J. B.
,
1997
, “
Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates With Application to Ta-W Alloys
,”
Acta Mater.
,
45
(
3
), pp.
907
919
.
43.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier Science B.V.
,
Amsterdam, The Netherlands
.
44.
Nemat-Nasser
,
S.
,
Guo
,
W. G.
,
Nesterenko
, V
. F.
,
Indrakanti
,
S. S.
, and
Gu
,
Y. B.
,
2001
, “
Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling
,”
Mech. Mater.
,
33
(
8
), pp.
425
439
.
45.
Luo
,
J.
,
Li
,
M. Q.
,
Li
,
X. L.
, and
Shi
,
Y. P.
,
2010
, “
Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables
,”
Mech. Mater.
,
42
(
2
), pp.
157
165
.
46.
Brown
,
A. A.
, and
Bammann
,
D. J.
,
2012
, “
Validation of a Model for Static and Dynamic Recrystallization in Metals
,”
Int. J. Plast.
,
32–33
(
3
), pp.
17
35
.
47.
Wedberg
,
D.
,
Svoboda
,
A.
, and
Lindgren
,
L. E.
,
2012
, “
Modelling High Strain Rate Phenomena in Metal Cutting Simulation
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
20
), pp.
85006
85024
.
48.
Kanel
,
G. I.
,
Razorenov
,
S. V.
,
Zaretsky
,
E. B.
,
Herrman
,
B.
, and
Meyer
,
L.
,
2003
, “
Thermal “Softening” and “Hardening” of Titanium and Its Alloy at High Strain Rates of Shock-Wave Deforming
,”
Phys. Solid State
,
45
(
4
), pp.
656
661
.
49.
Picu
,
R. C.
, and
Majorell
,
A.
,
2002
, “
Mechanical Behavior of Ti-6Al-4V at High and Moderate Temperature—Part II: Constitutive Modeling
,”
Mater. Sci. Eng. A
,
326
(
2
), pp.
306
316
.
50.
Bayoumi
,
A. E.
, and
Xie
,
J. Q.
,
1995
, “
Some Metallurgical Aspects of Chip Formation in Cutting Ti-6wt.%Al-4wt.%V Alloy
,”
Mater. Sci. Eng. A
,
190
(
1–2
), pp.
173
180
.
51.
Semiatin
,
S. L.
,
Seetharaman
,
V.
, and
Weiss
,
I.
,
1997
, “
The Thermomechanical Processing of Alpha/Beta Titanium Alloys
,”
J. Mater.
,
49
(
6
), pp.
33
39
.
52.
Semiatin
,
S. L.
,
Seetharaman
,
V.
, and
Weiss
,
I.
,
1999
, “
Flow Behavior and Globularization Kinetics During Hot Working of Ti-6Al-4V With a Colony Alpha Microstructure
,”
Mater. Sci. Eng. A
,
263
(
2
), pp.
257
271
.
53.
Semiatin
,
S. L.
,
Montheillet
,
F.
,
Shen
,
G.
, and
Jonas
,
J. J.
,
2002
, “
Self-Consistent Modeling of the Flow Behavior of Wrought Alpha/Beta Titanium Alloys Under Isothermal and Nonisothermal Hot-Working Conditions
,”
Metall. Mater. Trans. A
,
33
(
8
), pp.
2719
2727
.
54.
Weiss
,
I.
, and
Semiatin
,
S. L.
,
1998
, “
Thermomechanical Processing of Beta Titanium Alloys: An Overview
,”
Mater. Sci. Eng. A
,
243
(1–2), pp.
46
65
.
55.
Weiss
,
I.
, and
Semiatin
,
S. L.
,
1999
, “
Thermomechanical Processing of Alpha Titanium Alloys—An Overview
,”
Mater. Sci. Eng. A
,
263
(
2
), pp.
243
256
.
56.
Lütjering
,
G.
,
1998
, “
Influence of Processing on Microstructure and Mechanical Properties of (α+β) Titanium Alloys
,”
Mater. Sci. Eng. A
,
243
(1–2), pp.
32
45
.
57.
Shivpuri
,
R.
,
Hua
,
J.
,
Mittal
,
P.
, and
Srivastava
,
A. K.
,
2002
, “
Microstructure-Mechanics Interactions in Modeling Chip Segmentation During Titanium Machining
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
71
74
.
58.
Hua
,
J.
, and
Shivpuri
,
R.
,
2004
, “
Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
124
133
.
59.
Hershey
,
A. V.
,
1954
, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face-Centered Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
241
249
.
60.
Hershey
,
A. V.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
236
240
.
61.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.
62.
Kröner
,
E.
,
1978
, “
Self-Consistent Scheme and Graded Disorder in Polycrystal Elasticity
,”
J. Phys. F Met. Phys.
,
8
(
11
), pp.
2261
2267
.
63.
Kim
,
J. H.
,
Semiatin
,
S. L.
,
Lee
,
Y. H.
, and
Lee
,
C. S.
,
2011
, “
A Self-Consistent Approach for Modeling the Flow Behavior of the Alpha and Beta Phases in Ti-6Al-4V
,”
Metall. Mater. Trans. A
,
42
(
7
), pp.
1805
1814
.
64.
Segurado
,
J.
,
Lebensohn
,
R. A.
,
LLorca
,
J.
, and
Tomé
,
C. N.
,
2012
, “
Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements
,”
Int. J. Plast.
,
28
(
1
), pp.
124
140
.
65.
Vo
,
P.
,
Jahazi
,
M.
,
Yue
,
S.
, and
Bocher
,
P.
,
2007
, “
Flow Stress Prediction During Hot Working of Near-α Titanium Alloys
,”
Mater. Sci. Eng. A
,
447
(1–2), pp.
99
110
.
66.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
1002
.
67.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2000
, “
Hot Working of Commercial Ti-6Al-4V With an Equiaxed α-β Microstructure: Materials Modeling Considerations
,”
Mater. Sci. Eng. A
,
284
(
1–2
), pp.
84
194
.
68.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2002
, “
Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V With Lamellar Starting Structure
,”
Mater. Sci. Eng. A
,
325
(1–2), pp.
112
125
.
69.
Oikawa
,
H.
, and
Oomori
,
T.
,
1988
, “
Steady State Deformation Characteristics of α-Ti-Al Solid Solutions
,”
Mater. Sci. Eng. A
,
104
(
10
), pp.
125
130
.
70.
Oikawa
,
H.
,
Nishimura
,
K.
, and
Cui
,
M. X.
,
1985
, “
High-Temperature Deformation of Polycrystalline Beta Titanium
,”
Scr. Metall.
,
19
(
7
), pp.
825
828
.
71.
Oomori
,
T.
,
Yoneyama
,
T.
, and
Oikawa
,
H.
,
1988
, “
High-Temperature Deformation Behavior of Alpha Ti-5.6 mol%Al Alloy
,”
Trans. Jpn. Inst. Met.
,
29
(
5
), pp.
399
405
.
72.
Castro
,
R.
, and
Seraphin
,
L.
,
1966
, “
Contribution à l'étude métallographique et structurale de l'alliage de titane T A 6 V
,”
Mem. Etud. Sci. Rev. Metall.
,
63
(
4
), pp.
1025
1058
.
73.
Hartung
,
P. D.
,
Kramer
,
B. M.
, and
Von Turkovich
,
B. F.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann. Manuf. Technol.
,
31
(
1
), pp.
75
80
.
74.
Narutaki
,
N.
, and
Murakoshi
,
A.
,
1983
, “
Study on Machining of Titanium Alloys
,”
CIRP Ann. Manuf. Technol.
,
32
(
1
), pp.
65
69
.
75.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.
76.
Zhang
,
X. Q.
,
Zhang
,
X. P.
, and
Srivastava
,
A. K.
,
2011
, “
Predicting the High Speed Cutting Process of Titanium Alloy by Finite Element Method
,”
ASME
Paper No. MSEC2011-50208.
77.
Bai
,
Y. L.
,
Xue
,
Q.
,
Xu
,
Y. B.
, and
Shen
,
L. T.
,
1994
, “
Characteristics and Microstructure in the Evolution of Shear Localization in Ti-6Al-4V Alloy
,”
Mech. Mater.
,
17
(
2–3
), pp.
155
164
.
78.
Daymi
,
A.
,
Boujelbene
,
M.
,
Ben Salem
,
S.
,
Hadj Sassi
,
B.
, and
Torbaty
,
S.
,
2009
, “
Effect of the Cutting Speed on the Chip Morphology and the Cutting Forces
,”
Arch. Comput. Mater. Sci. Surf. Eng.
,
1
(
2
), pp.
77
83
.
79.
Majorell
,
A.
,
Srivatsa
,
S.
, and
Picu
,
R. C.
,
2002
, “
Mechanical Behavior of Ti-6Al-4V at High and Moderate Temperature—Part I: Experimental Results
,”
Mater. Sci. Eng. A
,
326
(
2
), pp.
297
305
.
80.
Sastry
,
S. M. L.
,
Lederich
,
R. J.
,
Mackay
,
T. L.
, and
Kerr
,
W. R.
,
2013
, “
Superplastic Forming Characterization of Titanium Alloy
,”
J. Met.
,
135
(
1
), pp.
48
53
.
81.
Qu
,
Y. D.
,
Wang
,
M. M.
,
Lei
,
L. M.
,
Huang
,
X.
,
Wang
,
L. Q.
,
Qin
,
J. N.
,
Lu
,
W. J.
, and
Zhang
,
D.
,
2012
, “
Behavior and Modeling of High Temperature Deformation of an α+β Titanium Alloy
,”
Mater. Sci. Eng. A
,
555
(
14
), pp.
99
105
.
82.
Lesuer
,
D. R.
,
2000
, “
Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum
,” U.S. Department of Transportation/Federal Aviation Administration,
Report No. UCRL-ID-134691
, pp.
1
36
.
83.
HKS
,
2008
, “
Abaqus/Explicit Analysis User Manual, Version 6.8.1
,”
Simulia
,
Providence, RI
.
84.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Role of Phase Transformation in Chip Segmentation During High Speed Machining of Dual Phase Titanium Alloys
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3048
3066
.
85.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti-6Al-4V Titanium Alloy-Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tool Manuf.
,
66
(
3
), pp.
37
43
.
86.
Miguélez
,
M. H.
,
Soldani
,
X.
, and
Molinari
,
A.
,
2013
, “
Analysis of Adiabatic Shear Banding in Orthogonal of Ti Alloy
,”
Int. J. Mech. Sci.
,
75
(
10
), pp.
212
222
.
87.
Macdougall
,
D. A. S.
, and
Harding
,
J.
,
1999
, “
A Constitutive Relation and Failure Criterion for Ti6Al4V Alloy at Impact Rates of Strain
,”
J. Mech. Phys. Solids
,
47
(
5
), pp.
1157
1185
.
You do not currently have access to this content.