Cutting stress field in machining process plays a significant role in the understanding of cutting mechanics and prediction of surface integrity, tool wear, and failure. It is in great need to get accurate and reliable cutting stresses in the chip formation zone. In this paper, a new methodology to obtain the cutting stress field is proposed. The deformation field containing elastic as well as plastic parts can be obtained via digital image correlation (DIC) technique. The orthogonal cutting stress field can be obtained with the experimental determined deformation field and material constitutive model as inputs. However, the challenge is to handle the inaccuracy of infinitesimal elastic deformation involved in the total deformation due to the inaccuracy of the obtained images. We develop a method to modify the hydrostatic pressure field based on mechanical equilibrium equations to compensate the inaccuracy of elastic deformation part. Besides, Eulerian logarithmic strain based on a least square plane fit on a subset of displacement data is adopted to reduce the image noise. The stress distribution along the shear plane and tool–chip interface can be extracted and integrated to calculate cutting forces. A feasibility study is performed by comparing the cutting forces predicted based on this new method against the experimental measurements. The comparison of cutting parameters obtained through DIC technique with finite element method (FEM) predictions is also made.

References

1.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
275
288
.
2.
Thiele
,
J. D.
, and
Melkote
,
S. N.
,
1999
, “
Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel
,”
J. Mater. Process. Technol.
,
94
(
2
), pp.
216
226
.
3.
Yen
,
Y.-C.
,
Jain
,
A.
, and
Altan
,
T.
,
2004
, “
A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
72
81
.
4.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
A
), pp.
168
175
.
5.
Lee
,
E.
, and
Shaffer
,
B.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(4), pp. 405–413.
6.
Oxley
,
P. L. B.
, and
Young
,
H.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
, New York.
7.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London, Ser. A
,
360
(
1703
), pp. 587–610.
8.
Zorev
,
N. N.
,
1966
,
Metal Cutting Mechanics
,
Pergamon
,
Oxford, UK
.
9.
Fang
,
N
.,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part II: Analysis of the Size Effect and the Shear Strain-Rate
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
743
762
.
10.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.
11.
Liang
,
S.
, and
Su
,
J.-C.
,
2007
, “
Residual Stress Modeling in Orthogonal Machining
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
65
68
.
12.
Strenkowski
,
J. S.
, and
Carroll
,
J.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
107
(
4
), pp.
349
354
.
13.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
14.
Zhang
,
Y.
,
Mabrouki
,
T.
,
Nelias
,
D.
, and
Gong
,
Y. D.
,
2011
, “
Chip Formation in Orthogonal Cutting Considering Interface Limiting Shear Stress and Damage Evolution Based on Fracture Energy Approach
,”
Finite Elements Anal. Des.
,
47
(
7
), pp.
850
863
.
15.
Liu
,
J.
,
Bai
,
Y.
, and
Xu
,
C.
,
2014
, “
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011010
.
16.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2015
, “
An Enhanced Microstructure-Level Finite Element Machining Model for Carbon Nanotube-Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021009
.
17.
Ma
,
J.
,
Duong
,
N. H.
,
Chang
,
S.
,
Lian
,
Y.
,
Deng
,
J.
, and
Lei
,
S.
,
2015
, “
Assessment of Microgrooved Cutting Tool in Dry Machining of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031001
.
18.
Yang
,
X.
, and
Liu
,
C. R.
,
2002
, “
A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
703
723
.
19.
Kim
,
J.-D.
,
Marinov
,
V.
, and
Kim
,
D.-S.
,
1997
, “
Built-Up Edge Analysis of Orthogonal Cutting by the Visco-Plastic Finite-Element Method
,”
J. Mater. Process. Technol.
,
71
(
3
), pp.
367
372
.
20.
Chandrasekaran
,
H.
, and
Kapoor
,
D.
,
1965
, “
Photoelastic Analysis of Tool–Chip Interface Stresses
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
495
502
.
21.
Usui
,
E.
, and
Takeyama
,
H.
,
1960
, “
A Photoelastic Analysis of Machining Stresses
,”
ASME J. Eng. Ind.
,
82
(
4
), pp.
303
307
.
22.
Ramalingam
,
S.
, and
Lehn
,
L. L.
,
1971
, “
A Photoelastic Study of Stress Distribution During Orthogonal Cutting—Part 1: Workpiece Stress Distribution
,”
ASME J. Eng. Ind.
,
93
(
2
), pp.
527
537
.
23.
Bagchi
,
A.
, and
Wright
,
P.
,
1987
, “
Stress Analysis in Machining With the Use of Sapphire Tools
,”
Proc. R. Soc. London, Ser. A
,
409
(
1836
), pp. 99–113.
24.
Uhlmann
,
E.
,
Gerstenberger
,
R.
,
Herter
,
S.
,
Hoghé
,
T.
,
Reimers
,
W.
,
Camin
,
B.
,
Martins
,
R. V.
,
Schreyer
,
A.
, and
Fischer
,
T.
,
2011
, “
In Situ Strain Measurement in the Chip Formation Zone During Orthogonal Cutting
,”
Prod. Eng.
,
5
(
1
), pp.
1
8
.
25.
Stevenson
,
M.
, and
Oxley
,
P.
,
1969
, “
An Experimental Investigation of the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
561
576
.
26.
Tay
,
A.
,
Stevenson
,
M.
, and
Davis
,
G. D. V.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
627
638
.
27.
Pujana
,
J.
,
Arrazola
,
P.
, and
Villar
,
J.
,
2008
, “
In-Process High-Speed Photography Applied to Orthogonal Turning
,”
J. Mater. Process. Technol.
,
202
(
1
), pp.
475
485
.
28.
Gnanamanickam
,
E.
,
Lee
,
S.
,
Sullivan
,
J. P.
, and
Chandrasekar
,
S.
,
2007
, “
Direct Measurement of Large-Strain Deformation Field in Machining
,”
SEM Annual Conference and Exposition
, pp. 1080–1087.
29.
Lee
,
S.
,
Hwang
,
J.
,
Ravi Shankar
,
M.
,
Chandrasekar
,
S.
, and
Dale Compton
,
W.
,
2006
, “
Large Strain Deformation Field in Machining
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1633
1643
.
30.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. London, Ser. A
,
471
(
2178
), p. 20150194.
31.
Baizeau
,
T.
,
Campocasso
,
S.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2015
, “
Effect of Rake Angle on Strain Field During Orthogonal Cutting of Hardened Steel With c-BN Tools
,”
Procedia CIRP
,
31
, pp.
166
171
.
32.
Corona
,
E.
, and
Orient
,
G. E.
,
2014
, “
An Evaluation of the Johnson–Cook Model to Simulate Puncture of 7075 Aluminum Plates
,” Sandia National Laboratories (SNL-NM), Albuquerque, NM,
Report No. SAND2014-1550
.
33.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer Science & Business Media
, New York.
34.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2011
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
, Singapore.
35.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
36.
Oxley
,
P.
,
1961
, “
Mechanics of Metal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
1
(
1
), pp.
89
97
.
You do not currently have access to this content.