Abstract
Hydroerosive grinding is used as a finishing and inlet rounding operation of diesel nozzles to improve the engine performance. A mixture of hard particles suspended in a carrier fluid circulates through the injection holes to remove material until the required flow condition is achieved, although the time to reach this specification increases with time. The aim of this study is to analyze the process efficiency without renewal of solid particles. Results show that the removal efficiency decreased 20% after 150 hrs and this significant loss can be attributed to hydrodynamic interactions, particle size distribution change, and fluid viscosity reduction.
Issue Section:
Research Papers
References
1.
Winter
, J.
, Dittus
, B.
, Kerst
, A.
, Muck
, O.
, Schulz
, R.
, and Vogel
, A.
, 2004
, “Nozzle Hole Geometry—A Powerful Instrument for Advanced Spray Design
,” Thiesel International Conference on Thermo-and Fluid Dynamics Processes in Diesel Engines
, Valencia
, Spain
, pp. 19–34.2.
Kim
, H. J.
, Park
, S. H.
, and Lee
, C. S.
, 2015
, “Influence of the Fuel Spray Angle and the Injection Strategy on the Emissions Reduction Characteristics in a Diesel Engine
,” Proc. Inst. Mech. Eng. D
, 229
(5
), pp. 563
–573
.10.1177/09544070145477463.
Payri
, F.
, Bermúdez
, V.
, Payri
, R.
, and Salvador
, F. J.
, 2005
, “The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles
,” Fuel
, 83
(4–5
), pp. 419
–431
.10.1016/j.fuel.2003.09.0104.
Potz
, D.
, Christ
, W.
, and Dittus
, B.
, 2002
, “Diesel Nozzle—The Determining Interface Between Injection System and Combustion Chamber
,” Thermo- and Fluid-Dynamic Processes in Diesel Engines
, Springer
, Berlin, pp. 133
–143
.5.
Weickert
, M.
, Sommerfeld
, M.
, Teike
, G.
, and Iben
, U.
, 2011
, “Experimental and Numerical Investigation of the Hydroerosive Grinding
,” Powder Technol.
, 214
(1
), pp. 1
–13
.10.1016/j.powtec.2011.07.0136.
Clark
, H. M.
, and Hartwich
, R. B.
, 2001
, “A Re-Examination of the “Particle Size Effect” in Slurry Erosion
,” Wear
, 248
(1–2
), pp. 147
–161
.10.1016/S0043-1648(00)00556-17.
Sooraj
, V. S.
, and Radhakrishnan
, V.
, 2013
, “Elastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces
,” ASME J. Manuf. Sci. Eng.
, 135
(5
), p. 051019
.10.1115/1.40253388.
Finnie
, I.
, 1995
, “Some Reflections on the Past and Future of Erosion
,” Wear
, 186–187
(1
), pp. 1
–10
.10.1016/0043-1648(95)07188-19.
Bitter
, J. G. A.
, 1963
, “A Study of Erosion Phenomena Part I
,” Wear
, 6
(1
), pp. 5
–21
.10.1016/0043-1648(63)90003-610.
Desale
, G. R.
, Gandhi
, B. K.
, and Jain
, S. C.
, 2006
, “Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,” Wear
, 261
(7–8
), pp. 914
–921
.10.1016/j.wear.2006.01.03511.
Diver
, C.
, Atkinson
, J.
, Befrui
, B.
, Heiml
, H. J.
, and Li
, L.
, 2007
, “Improving the Geometry and Quality of a Micro-Hole Fuel Injection Nozzle by Means of Hydroerosive Grinding
,” Proc. Inst. Mech. Eng. B
, 221
(1
), pp. 1
–9
.10.1243/09544054JEM39512.
13.
Humphrey
, J. A. C.
, 1990
, “Fundamentals of Fluid Motion in Erosion by Solid Particle Impact
,” Int. J. Heat Fluid Flow
, 11
(3
), pp. 170
–195
.10.1016/0142-727X(90)90036-B14.
Richardson
, J. F.
, and Zaki
, W. N.
, 1997
, “Sedimentation and Fluidisation: Part 1
,” Chem. Eng. Res. Des.
, 75
, pp. S82
–S100
.10.1016/S0263-8762(97)80006-815.
BS EM 10084:2008
, 2008
, Case Hardening Steels—Technical Delivery Conditions
, BSI British Standards
, London.16.
Hamblin
, M. G.
, and Stachowiak
, G. W.
, 1996
, “Description of Abrasive Particle Shape and Its Relation to Two-Body Abrasive Wear
,” Tribol. Trans.
, 39
(4
), pp. 803
–810
.10.1080/1040200960898359817.
Field
, E.
, Farhat
, M.
, and Walley
, M.
, 2014
, “Comminution Limit (CL) of Particles and Possible Implications for Pumped Storage Reservoirs
,” J. Mater. Sci.
, 49
(10
), pp. 3780
–3784
.10.1007/s10853-014-8089-3Copyright © 2016 by ASME
You do not currently have access to this content.