Due to the repeated thermal cycling that occurs with the processing of each subsequent layer, the microstructure of additively manufactured parts undergoes complex changes throughout the deposition process. Understanding and modeling this evolution poses a greater challenge than for single-cycle heat treatments. Following the work of Kelly and Charles, a Ti-6Al-4V microstructural model has been developed which calculates the phase fractions, morphology, and alpha lath width given a measured or modeled thermal history. Dissolution of the alpha phase is modeled as 1D plate growth of the beta phase, while alpha growth is modeled by the technique of Johnson–Mehl–Avrami (JMA). The alpha phase is divided into colony and basketweave morphologies based on an intragranular nucleation temperature. Evolution of alpha lath width is calculated using an Arrhenius equation. Key parameters of the combined Kelly–Charles model developed here are optimized using the Nelder–Mead simplex algorithm. For the deposition of two L-shaped geometries with different processing parameters, the optimized model gives a mean error over 24 different locations of 37% relative to experimentally measured lath widths, compared to 106% for the original Kelly–Charles model.

References

1.
Cai
,
J.
,
Li
,
F.
,
Liu
,
T.
,
Chen
,
B.
, and
He
,
M.
,
2011
, “
Constitutive Equations for Elevated Temperature Flow Stress of Ti–6Al–4V Alloy Considering the Effect of Strain
,”
Mater. Des.
,
32
(
3
), pp.
1144
1151
.
2.
Majorell
,
A.
,
Srivatsa
,
S.
, and
Picu
,
R.
,
2002
, “
Mechanical Behavior of Ti–6Al–4V at High and Moderate Temperatures—Part I: Experimental Results
,”
Mater. Sci. Eng.: A
,
326
(
2
), pp.
297
305
.
3.
Tiley
,
J.
,
Searles
,
T.
,
Lee
,
E.
,
Kar
,
S.
,
Banerjee
,
R.
,
Russ
,
J.
, and
Fraser
,
H. L.
,
2004
, “
Quantification of Microstructural Features in α/β Titanium Alloys
,”
Mater. Sci. Eng.: A
,
372
(
1
), pp.
191
198
.
4.
Searles
,
T.
,
Tiley
,
J.
,
Tanner
,
A.
,
Williams
,
R.
,
Rollins
,
B.
,
Lee
,
E.
,
Kar
,
S.
,
Banerjee
,
R.
, and
Fraser
,
H. L.
,
2005
, “
Rapid Characterization of Titanium Microstructural Features for Specific Modelling of Mechanical Properties
,”
Meas. Sci. Technol.
,
16
(
1
), p.
60
.
5.
Costa
,
L.
,
Vilar
,
R.
,
Reti
,
T.
, and
Deus
,
A.
,
2005
, “
Rapid Tooling by Laser Powder Deposition: Process Simulation Using Finite Element Analysis
,”
Acta Mater.
,
53
(
14
), pp.
3987
3999
.
6.
Kar
,
S.
,
Searles
,
T.
,
Lee
,
E.
,
Viswanathan
,
G.
,
Fraser
,
H.
,
Tiley
,
J.
, and
Banerjee
,
R.
,
2006
, “
Modeling the Tensile Properties in β-Processed α/β Ti Alloys
,”
Metall. Mater. Trans. A
,
37
(
3
), pp.
559
566
.
7.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
8.
Avrami
,
M.
,
1940
, “
Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei
,”
J. Chem. Phys.
,
8
(
2
), pp.
212
224
.
9.
Avrami
,
M.
,
1941
, “
Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
,”
J. Chem. Phys.
,
9
(
2
), pp.
177
184
.
10.
Johnson
,
W. A.
, and
Mehl
,
R. F.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. AIME
,
135
(
8
), pp.
396
415
.
11.
Kolmogorov
,
A. N.
,
1937
, “
On the Statistical Theory of the Crystallization of Metals
,”
Bull. Acad. Sci. USSR, Math. Ser.
,
1
, pp.
355
359
.
12.
Malinov
,
S.
,
Markovsky
,
P.
,
Sha
,
W.
, and
Guo
,
Z.
,
2001
, “
Resistivity Study and Computer Modelling of the Isothermal Transformation Kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08 Si Alloys
,”
J. Alloys Compd.
,
314
(
1
), pp.
181
192
.
13.
Mudge
,
R. P.
, and
Wald
,
N. R.
,
2007
, “
Laser Engineered Net Shaping Advances Additive Manufacturing and Repair
,”
Weld. J.
,
86
(
1
), pp.
44
48
.
14.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
15.
Kobryn
,
P.
, and
Semiatin
,
S.
,
2001
, “
The Laser Additive Manufacture of Ti-6Al-4V
,”
JOM
,
53
(
9
) pp.
40
42
.
16.
Mahesh
,
M.
,
Wong
,
Y.
,
Fuh
,
J.
, and
Loh
,
H.
,
2004
, “
Benchmarking for Comparative Evaluation of RP Systems and Processes
,”
Rapid Prototyping J.
,
10
(
2
), pp.
123
135
.
17.
Sheng
,
W.
,
Xi
,
N.
,
Chen
,
H.
,
Chen
,
Y.
, and
Song
,
M.
,
2003
, “
Surface Partitioning in Automated CAD-Guided Tool Planning for Additive Manufacturing
,” 2003
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, IROS 2003, Oct. 27–31, IEEE, Piscataway, NJ, Vol.
2
, pp.
2072
2077
.
18.
Galantucci
,
L.
,
Lavecchia
,
F.
, and
Percoco
,
G.
,
2009
, “
Experimental Study Aiming to Enhance the Surface Finish of Fused Deposition Modeled Parts
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
189
192
.
19.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
20.
Panhalkar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2014
, “
Increasing Part Accuracy in Additive Manufacturing Processes Using a KD Tree Based Clustered Adaptive Layering
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061017
.
21.
Kelly
,
S. M.
,
2004
, “
Thermal and Microstructure Modeling of Metal Deposition Processes With Application to Ti-6Al-4V
,”
Ph.D. dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
22.
Paul
,
S.
,
Gupta
,
I.
, and
Sing
,
R. K.
,
2015
, “
Characterization and Modeling of Microscale Preplaced Powder Cladding Via Fiber Laser
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031019
.
23.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
24.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
.
25.
Kelly
,
S.
, and
Kampe
,
S.
,
2004
, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characterization
,”
Metall. Mater. Trans. A
,
35
(
6
), pp.
1861
1867
.
26.
Kelly
,
S.
, and
Kampe
,
S.
,
2004
, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part II. Thermal Modeling
,”
Metall. Mater. Trans. A
,
35
(
6
), pp.
1869
1879
.
27.
Christian
,
J. W.
,
2002
,
The Theory of Transformations in Metals and Alloys (Part I + II)
,
Newnes
, Burlington, MA.
28.
Kriczky
,
D. A.
,
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Nassar
,
A. R.
, and
Craig
,
J.
,
2015
, “
3D Spatial Reconstruction of Thermal Characteristics in Directed Energy Deposition Through Optical Thermal Imaging
,”
J. Mater. Process. Technol.
,
221
(1), pp.
172
186
.
29.
Fan
,
Y.
,
Cheng
,
P.
,
Yao
,
Y.
,
Yang
,
Z.
, and
Egland
,
K.
,
2005
, “
Effect of Phase Transformations on Laser Forming of Ti–6Al–4V Alloy
,”
J. Appl. Phys.
,
98
(
1
), p.
013518
.
30.
Crespo
,
A.
,
2011
,
Modelling of Heat Transfer and Phase Transformations in the Rapid Manufacturing of Titanium Components
,
INTECH Open Access Publisher
, Rijeka, Croatia.
31.
Charles
,
C.
,
2008
, “
Modelling Microstructure Evolution of Weld Deposited Ti-6Al-4V
,”
Licentiate thesis
, Luleå University of Technology, Luleå, Sweden.
32.
Charles
,
C.
, and
Järvstråt
,
N.
,
2009
, “
Modelling Ti-6Al-4V Microstructure by Evolution Laws Implemented as Finite Element Subroutines: Application to TIG Metal Deposition
,”
8th International Conference Trends in Welding Research
, Pine Mountain, GA, June 1–6, pp.
477
485
.
33.
Murgau
,
C. C.
,
Pederson
,
R.
, and
Lindgren
,
L.
,
2012
, “
A Model for Ti–6Al–4V Microstructure Evolution for Arbitrary Temperature Changes
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
5
), p.
055006
.
34.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
(1), pp.
309
320
.
35.
Husain
,
A.
,
Sehgal
,
D.
, and
Pandey
,
R.
,
2004
, “
An Inverse Finite Element Procedure for the Determination of Constitutive Tensile Behavior of Materials Using Miniature Specimen
,”
Comput. Mater. Sci.
,
31
(
1
), pp.
84
92
.
36.
Hess
,
R.
,
Wang
,
S.
, and
Gao
,
C.
,
1991
, “
Generalized Technique for Inverse Simulation Applied to Aircraft Maneuvers
,”
J. Guid.
, Control, Dyn.,
14
(
5
), pp.
920
926
.
37.
Calvello
,
M.
, and
Finno
,
R. J.
,
2004
, “
Selecting Parameters to Optimize in Model Calibration by Inverse Analysis
,”
Comput. Geotech.
,
31
(
5
), pp.
410
424
.
38.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
) pp.
299
305
.
39.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
, Vol.
2
,
McGraw-Hill
,
New York
.
40.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
(1), pp.
51
60
.
41.
Irwin
,
J.
, and
Michaleris
,
P.
,
2015
, “
A Line Heat Input Model for Additive Manufacturing
,” ASME Paper No. MANU-15-1327.
42.
Gouge
,
M. F.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Modeling Forced Convection in the Thermal Simulation of Laser Cladding Processes
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
14
.
43.
Heigel
,
J.
,
Michaleris
,
P.
, and
Reutzel
,
E.
,
2014
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
,
5
, pp. 9–19.
44.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2014
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4V
,”
Proc. Inst. Mech. Eng., Part B
,
229
(10), pp. 1803–1813.
45.
Ahmed
,
T.
, and
Rack
,
H.
,
1998
, “
Phase Transformations During Cooling in α+ β Titanium Alloys
,”
Mater. Sci. Eng.: A
,
243
(
1
), pp.
206
211
.
46.
Gil
,
F.
,
Ginebra
,
M.
,
Manero
,
J.
, and
Planell
,
J.
,
2001
, “
Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy
,”
J. Alloys Compd.
,
329
(
1
), pp.
142
152
.
47.
Elmer
,
J.
,
Palmer
,
T.
,
Babu
,
S.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2004
, “
Phase Transformation Dynamics During Welding of Ti–6Al–4V
,”
J. Appl. Phys.
,
95
(
12
), pp.
8327
8339
.
48.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
49.
Gao
,
F.
, and
Han
,
L.
,
2012
, “
Implementing the Nelder–Mead Simplex Algorithm With Adaptive Parameters
,”
Comput. Optim. Appl.
,
51
(
1
), pp.
259
277
.
50.
Chlebus
,
E.
,
Kuźnicka
,
B.
,
Kurzynowski
,
T.
, and
Dybała
,
B.
,
2011
, “
Microstructure and Mechanical Behaviour of Ti–6Al–7Nb Alloy Produced by Selective Laser Melting
,”
Mater. Charact.
,
62
(
5
), pp.
488
495
.
51.
Tayon
,
W. A.
,
Shenoy
,
R. N.
,
Redding
,
M. R.
,
Bird
,
R. K.
, and
Hafley
,
R. A.
,
2014
, “
Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061005
.
You do not currently have access to this content.