For assembly of rotating machines, such as machining tools, industrial turbomachinery, or aircraft gas turbine engines, parts need to be assembled in order to avoid internal bending of the geometric axis of the rotor to meet functional and vibration requirements. Straight-build assembly optimization is a way of joining parts together in order to have a straight line between the centers of the components. Straight-build assembly is achieved by minimizing eccentricity error stage-by-stage in the assembly. To achieve minimal eccentricity, this paper proposes three assembly procedures: (i) table-axis-build assembly by minimizing the distances from the centers of components to table axis; (ii) minimization of the position error between actual and nominal centers of the component; and (iii) central-axis-build assembly by minimizing the distances from the centers of components to a central axis. To test the assembly procedures, two typical assembly examples are considered using four identical rectangular components and four nonidentical rectangular components, respectively. Monte Carlo simulations are used to analyze the tolerance build-up, based on normally distributed random variables. The results show that assembly variations can be reduced significantly by selecting best relative orientation between mating parts. The results also show that procedures (i) and (ii) have the most potential to minimize the error build-up in the straight build of an assembly. For these procedures, the variation is reduced by 45% and 40% for identical and nonidentical components, respectively, compared to direct-build assembly. Procedure (iii) provides better performance than direct-build assembly for identical components assembly, while it gives smaller variation at the first two stages and larger variation at the third stage for nonidentical components assembly. This procedure could be used in an assembly with limited stages.

References

1.
Lee
,
B.
,
Shalaby
,
M. M.
,
Collins
,
R. J.
,
Crisan
,
V.
,
Walls
,
S. A.
,
Robinson
,
D. M.
, and
Saitou
,
K.
, 2007, “
Variation Analysis of Three Dimensional Non-Rigid Assemblies
” IEEE International Symposium on Assembly and Manufacturing,
K.
Saitou
, ed.,
ASME
,
New York
, pp.
13
18
.
2.
Thornton
,
A. C.
, 1999, “
A Mathematical Framework for the Key Characteristic Process
,”
Res. Eng. Des.
,
11
, pp.
145
157
.
3.
Xiong
,
C.
,
Rong
,
Y.
,
Koganti
,
R. P.
,
Zaluzec
,
M. J.
, and
Wang
,
W.
, 2002, “
Geometric Variation Prediction in Automotive Assembly
,”
Assem. Autom.
,
22
, pp.
260
269
.
4.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
,
6
, pp.
191
210
.
5.
Whitney
,
D. E.
,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development, Oxford Series Advanced Manufacturing
(
Oxford University
,
Oxford
, 2004).
6.
Paul
,
R. P.
,
Robot Manipulators: Mathematics, Programming, and Control
(
The MIT Press
,
Cambridge, MA
, 1981).
7.
Veitschegger
,
W. K.
, and
Wu
,
C. H.
, 1986, “
Robot Accuracy Analysis Based on Kinematics
,”
IEEE J. Rob. Autom.
,
2
(
3
), pp.
171
179
.
8.
Jastrzebski
,
M. J.
, 1991, “
Software for Analysis of 3-D Statistical Tolerance Propagation in Assemblies Using Closed-Form Matrix Transform
,” Ph.D. thesis, MIT, Cambridge.
9.
Whitney
,
D. E.
,
Mantripragada
,
R.
,
Adams
,
J. D.
, and
Rhee
,
S. J.
, 1999, “
Designing Assemblies
,”
Res. Eng. Des.
11
, pp.
229
253
.
10.
Chase
,
K. W.
, and
Greenwood
,
W. H.
, 1988, “
Design Issues in Mechanical Tolerance Analysis
,”
Manuf. Rev. ASME
,
1
(
1
), pp.
50
59
.
11.
Chase
,
K. W.
, and
Parkinson
,
A. R.
, 1991, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
, pp.
23
37
.
12.
Mantripragada
,
R.
, 1998, “
Assembly Oriented Design: Concepts, Algorithms and Computational Tools
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
MA
.
13.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,
Leuven
,
Belgium
, 1998, See http://ieeexplore.ieee.org/stamp/stamp.jsp?tp= arnumber=676376&userType=&tag=1http://ieeexplore.ieee.org/stamp/stamp.jsp?tp= arnumber=676376&userType=&tag=1.
14.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000,
Modeling and Diagnosis of Multistage Manufacturing Processes: Part I – State Space Model
, JAPAN / USA Symposium on Flexible Automation,
American Society of Mechanical Engineers Staff, ASME Press
,
New York
, Vol.
2000JUSFA–13146
. See http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4808&rep=rep1&type=phttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4808&rep=rep1&type=p
15.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modelling Variation Propagation of Multi-Station Assembly Systems with Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
16.
Dantan
,
J. Y.
,
Mathieu
,
L.
, and
Anwer
,
N.
, 2003, “
Integrated Tolerancing Process for Conceptual Design
,”
CIRP Ann.–Manuf. Technol.
,
52
(
1
), pp.
135
138
.
17.
Forouraghi
,
B.
, 2002, “
Worst-Case Tolerance Design and Quality Assurance Via Genetic Algorithms
,”
J. Optim. Theory Appl.
,
13
(
2
), pp.
251
268
.
18.
Zhang
,
C.
, and
Wang
,
H. P.
, 1993, “
Optimal Process Sequence Selection and Manufacturing Tolerance Allocation
,”
J. Des. Manuf.
,
3
, pp.
135
146
.
19.
Huang
,
W.
, and
Kong
,
Z.
, 2008, “
Simulation and Integration of Geometric and Rigid Body Kinematics Errors for Assembly Variation Analysis
,”
J. Manuf. Syst.
,
27
, pp.
36
44
.
20.
Hu
,
S. J.
, and
Camelio
,
J. A.
, 2006, “
Modeling and Control of Compliant Assembly Systems
,”
CIRP Ann.–Manuf. Technol.
,
55
(
1
), pp.
19
22
.
21.
Mansoor
,
E. N.
, 1961, “
Selective Assembly—Its Analysis and Applications
,”
Int. J. Prod. Res.
,
1
(
1
), pp.
13
24
.
22.
Pugh
,
G. A.
, 1992, “
Selective Assembly With Components of Dissimilar Variance
,”
Comput. Ind. Eng.
,
23
, pp.
487
491
.
23.
Mease
,
D.
,
Nair
,
V. N.
, and
Sudjianto
,
A.
, 2004, “
Selective Assembly in Manufacturing: Statistical Issues and Optimal Binning Strategies
,”
Technometrics
,
46
(
2
), pp.
165
175
.
24.
Matsuura
,
S.
, and
Shinozaki
,
N.
, 2011, “
Optimal Process Design in Selective Assembly When Components With Smaller Variance are Manufactured at Three Shifted Means
,”
Int. J. Prod. Res.
,
49
(
3
), pp.
869
882
.
25.
Turner
,
J. U.
, 1990, “
Relative Positioning of Parts in Assemblies Using Mathematical Programming
,”
Comput.-Aided Des.
,
22
(
7
), pp.
394
400
.
26.
Li
,
B.
, and
Roy
,
U.
, 2001, “
Relative Positioning of Toleranced Polyhedral Parts in an Assembly
,”
IIE Trans.
,
33
, pp.
323
336
.
27.
Roy
,
U.
, and
Li
,
B.
, 1998, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects- I. Form Tolerances
,”
Comput.-Aided Des.
,
30
(
2
), pp.
151
161
.
28.
BSI, 2007 “Geometric Product Specifications (Gps)-General Concepts; Part 1: Model for Geometrical Specification and Varification”, DD CEN ISO/TS 17450-1:2007.
29.
Klocke
,
F.
,
Veselovac
,
D.
,
Auerbach
,
T.
, and
Seidner
,
R.
, 2008, “
Intelligent Assembly for Aero Engine Components
,”
Proceedings of ICIRA
, Vol.
2
, pp.
927
935
.
30.
Behara
,
R. S.
,
Fontenot
,
G. F.
, and
Gresham
,
A.
, 1995, “
Customer Satisfaction Measurement and Analysis Using Six Sigma
,”
Int. J. Qual. Reliab. Manage.
,
3
, pp.
9
18
.
31.
Nigam
,
S. D.
, and
Turner
,
J. U.
, 1995, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.
32.
Mantripragada
,
R.
,
Cunningham
,
T. W.
, and
Whitney
,
D. E.
, 1997,
Assembly Oriented Design: A New Approach to Designing Assemblies
,
Proceedings of the Fifth IFIP TC5/WG5.2 International Workshop on Geometric Modeling in Computer-Aided Design on Product Modeling for Computer Integrated Design and Manufacture
,
M. J.
Pratt
,
R. D.
Sriram
, and
M. J.
Wozney
, eds.,
Chapman & Hall, Ltd.
,
London, UK
.
33.
Astrom
,
P.
, 2004, “
Simulation of Manufacturing Processes in Product Development
,” Ph.D. thesis, Lulea University of Technology, Lulea, Sweden.
34.
Roy
,
R.
,
Hinduja
,
S.
, and
Teti
,
R.
, 2008, “
Recent Advances in Engineering Design Optimisation: Chalanges and Future Trends
,”
CIRP Ann.–Manuf. Technol.
,
57
(
2
), pp.
697
715
.
You do not currently have access to this content.