Plasma processing is an important technology, which provides a capability to modify the material surface through etching, deposition, activation, functionalization, polymerization, etc. In the current plasma process, the reactive area of the sample is relatively large and thus a mask is needed for selectively treating the sample surface. As a result, the whole fabrication process has become more complicated. In this paper, a plasma integrated nanomanufacturing workcell, which consists of a microplasma source and an integrated atomic force microscopy (AFM) probe tip, has been developed to improve the current plasma apparatus design. The miniature microwave plasma discharge applicator is capable of creating a miniature plasma stream with a diameter ranging from 2 mm down to micrometers. Hence, with the new plasma apparatus it has become possible to locally treat a small area of the sample surface and simplify the fabrication process as the photomask is not required. Additionally, the AFM active probe can be precisely positioned on a desired surface to inspect and manipulate nanoobjects. Here, we report the design and implementation of this new system. Experimental results demonstrate the effectiveness of the system and show that the microplasma can be used in various applications including localized etching of silicon and diamond and localized patterning of photoresist.

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
2.
Marshall
,
B. T.
,
Sarangapani
,
K. K.
,
Wu
,
J.
,
Lawrence
,
M. B.
,
McEver
,
R. P.
, and
Zhu
,
C.
, 2006, “
Measuring Molecular Elasticity by Atomic Force Microscope Cantilever Fluctuations
,”
Biophys. J.
0006-3495,
90
, pp.
681
692
.
3.
Dubourg
,
F.
,
Kopp-Marsaudon
,
S.
,
Leclere
,
P.
,
Lazzaroni
,
R.
, and
Aime
,
J.
, 2001, “
Experimental Determination of the Viscosity at the Nanometer Scale on a Block Copolymer With an Oscillating Nanotip
,”
Eur. Phys. J. E
1292-8941,
6
, pp.
387
397
.
4.
Xu
,
D.
,
Watt
,
G. D.
,
Harb
,
J. N.
, and
Davis
,
R. C.
, 2005, “
Electrical Conductivity of Ferritin Proteins by Conductive AFM
,”
Nano Lett.
1530-6984,
5
, pp.
571
577
.
5.
Wang
,
D.
,
Tsau
,
L.
,
Wang
,
K. L.
, and
Chow
,
P.
, 1995, “
Nanofabrication of Thin Chromium Film Deposited on Si(100) Surfaces by Tip Induced Anodization in Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
67
, pp.
1295
1297
.
6.
Schaefer
,
D. M.
,
Reifenberger
,
R.
,
Patil
,
A.
, and
Andres
,
R. P.
, 1995, “
Fabrication of Two-Dimensional Arrays of Nanometer-Size Clusters With the Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
1012
1014
.
7.
Junno
,
T.
,
Deppert
,
K.
,
Montelius
,
L.
, and
Samuelson
,
L.
, 1995, “
Controlled Manipulation of Nanoparticles With an Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
66
(
26
), pp.
3627
3629
.
8.
Avouris
,
P.
,
Hertel
,
T.
, and
Martel
,
R.
, 1997, “
Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication
,”
Appl. Phys. Lett.
0003-6951,
71
, pp.
285
287
.
9.
Nemutudi
,
R.
,
Curson
,
N.
,
Appleyard
,
N.
,
Ritchie
,
D.
, and
Jones
,
G.
, 2001, “
Modification of a Shallow 2 Deg by AFM Lithography
,”
Solid-State Electron.
0038-1101,
57–58
, pp.
967
973
.
10.
Ahn
,
S. J.
,
Jang
,
Y. K.
,
Kim
,
S. A.
,
Lee
,
H.
, and
Lee
,
H.
, 2002, “
AFM Nanolithography on a Mixed Lb Film of Hexadecylamine and Palmitic Acid
,”
Ultramicroscopy
0304-3991,
91
, pp.
171
176
.
11.
Dubois
,
E.
, and
Bubbendor
,
J. -L.
, 1999, “
Nanometer Scale Lithography on Silicon, Titanium and PMMA Resist Using Scanning Probe Microscopy
,”
Solid-State Electron.
0038-1101,
43
, pp.
1085
1089
.
12.
Sitti
,
M.
, and
Hashimoto
,
H.
, 1998, “
Tele-Nanorobotics Using Atomic Force Microscope
,”
Proceedings of the IEEE International Conference on Intelligent Robots and Systems
, Victoria, BC, Canada, pp.
1739
1746
.
13.
Guthold
,
M.
,
Falvo
,
M. R.
,
Matthews
,
W. G.
,
Paulson
,
S. S.
, and
Erie
,
D. A.
, 2000, “
Controlled Manipulation of Molecular Samples With the Nanomanipulator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
2
), pp.
189
198
.
14.
Requicha
,
A. A. G.
,
Baur
,
C.
,
Bugacov
,
A.
,
Gazen
,
B. C.
,
Koel
,
B.
,
Madhukar
,
A.
,
Ramachandran
,
T. R.
,
Resch
,
R.
, and
Will
,
P.
, 1998, “
Nanorobotic Assembly of Two-Dimensional Structures
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Leuven, Belgium, pp.
3368
3374
.
15.
Hansen
,
L. T.
,
Kuhle
,
A.
,
Sorensen
,
A. H.
,
Bohr
,
J.
, and
Lindelof
,
P. E.
, 1998, “
A Technique for Positioning Nanoparticles Using an Atomic Force Microscope
,”
Nanotechnology
0957-4484,
9
, pp.
337
342
.
16.
Li
,
G. Y.
,
Xi
,
N.
,
Yu
,
M.
, and
Fung
,
W. K.
, 2003, “
3-D Nanomanipulation Using Atomic Force Microscope
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Taipei, Taiwan.
17.
Li
,
G. Y.
,
Xi
,
N.
, and
Yu
,
M.
, 2004, “
Development of Augmented Reality System for AFM Based Nanomanipulation
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
, pp.
358
365
.
18.
1989,
Plasma Etching
,
D. M.
Manos
and
D. L.
Flamm
, eds.,
Academic
,
New York
.
19.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
, 1994,
Principles of Plasma Discharges and Materials Processing
,
Wiley
,
New York
.
20.
Ikada
,
Y.
, 1994, “
Surface Modification of Polymers for Medical Application
,”
Biomaterials
0142-9612,
15
, pp.
725
736
.
21.
Moisan
,
M.
,
Barbeau
,
J.
,
Moreau
,
S.
,
Pelletier
,
J.
,
Tabrizian
,
M.
, and
Yahia
,
L.
, 2001, “
Low-Temperature Sterilization Using Gas Plasmas: A Review of the Experiments and an Analysis of the Inactivation Mechanisms
,”
Int. J. Pharm.
0378-5173,
226
, pp.
1
21
.
22.
Laroussi
,
M.
, 2002, “
Non-Thermal Decontamination of Biological Media by Atmospheric-Pressure Plasmas: Review, Analysis and Prospects
,”
IEEE Trans. Plasma Sci.
0093-3813,
30
, pp.
1409
1415
.
23.
Yasuda
,
H. K.
, and
Gazicki
,
M.
, 1982, “
Biomedical Applications of Plasma Polymerization and Plasma Treatment of Polymer Surfaces
,”
Biomaterials
0142-9612,
3
, pp.
68
77
.
24.
Yin
,
Y.
,
Messier
,
J.
, and
Hopwood
,
J. A.
, 1999, “
Miniaturization of Inductively Coupled Plasma Sources
,”
IEEE Trans. Plasma Sci.
0093-3813,
27
, pp.
1516
1524
.
25.
Park
,
S. -J.
,
Edena
,
J. G.
,
Chen
,
J.
, and
Liu
,
C.
, 2004, “
Microdischarge Devices With 10 or 30 μm Square Silicon Cathode Cavities: PD Scaling and Production of the XeO Excimer
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
4869
4871
.
26.
Narendra
,
J. J.
,
Grotjohn
,
T. A.
, and
Asmussen
,
J.
, 2008, “
Microstripline Applicators for Creating Micro Plasma Discharges With Microwave Energy
,”
Plasma Sources Sci. Technol.
0963-0252,
17
, p.
035027
.
27.
Bilgic
,
A. M.
,
Engel
,
U.
,
Voges
,
E.
,
Kückelheim
,
M.
, and
Broekaert
,
J. A. C.
, 2000, “
A New Low-Power Microwave Plasma Source Using Microstrip Technology for Atomic Emission Spectrometry
,”
Plasma Sources Sci. Technol.
0963-0252,
9
, pp.
1
4
.
28.
Bilgiç
,
A. M.
,
Voges
,
E.
,
Engel
,
U.
, and
Broekaert
,
J. A. C.
, 2000, “
A Low-Power 2.45 GHz Microwave Induced Helium Plasma Source at Atmospheric Pressure Based on Microstrip Technology
,”
J. Anal. At. Spectrom.
0267-9477,
15
, pp.
579
580
.
29.
Engel
,
U.
,
Bilgiç
,
A. M.
,
Haase
,
O.
,
Voges
,
E.
, and
Broekaert
,
J. A. C.
, 2000, “
A Microwave-Induced Plasma Based on Microstrip Technology and Its Use for the Atomic Emission Spectrometric Determination of Mercury With the Aid of the Cold-Vapor Technique
,”
Anal. Chem.
0003-2700,
72
, pp.
193
197
.
30.
Schermer
,
S.
,
Bings
,
N. H.
,
Bilgiç
,
A. M.
,
Stonies
,
R.
,
Voges
,
E.
, and
Broekaert
,
J. A. C.
, 2003, “
An Improved Microstrip Plasma for Optical Emission Spectrometry of Gaseous Species
,”
Spectrochim. Acta, Part B
0584-8547,
58
, pp.
1585
1596
.
31.
Zapata
,
I. J.
,
Pohl
,
P.
,
Bings
,
N. H.
, and
Broekaert
,
J. A. C.
, 2007, “
Evaluation and Application of Argon and Helium Microstrip Plasma for the Determination of Mercury by the Cold Vapor Technique and Optical Emission Spectrometry
,”
Anal. Bioanal. Chem.
1618-2642,
388
, pp.
1615
1623
.
32.
Pollak
,
J.
,
Moisan
,
M.
, and
Zakrzewski
,
Z.
, 2007, “
Long and Uniform Plasma Columns Generated by Linear Field-Applicators Based on Stripline Technology
,”
Plasma Sources Sci. Technol.
0963-0252,
16
, pp.
310
323
.
33.
Iza
,
F.
, and
Hopwood
,
J.
, 2005, “
Split-Ring Resonator Micro Plasma: Microwave Model, Plasma Impedance and Power Efficiency
,”
Plasma Sources Sci. Technol.
0963-0252,
14
, pp.
397
406
.
34.
Hopwood
,
J.
,
Iza
,
F.
,
Coy
,
S.
, and
Fenner
,
D. B.
, 2005, “
A Microfabricated Atmospheric-Pressure Micro Plasma Source Operating in Air
,”
J. Phys. D
0022-3727,
38
, pp.
1698
1703
.
35.
Iza
,
F.
, and
Hopwood
,
J. A.
, 2003, “
Low-Power Microwave Plasma Source Based on a Microstrip Split-Ring Resonator
,”
IEEE Trans. Plasma Sci.
0093-3813,
31
, pp.
782
787
.
36.
Grotjohn
,
T. A.
,
Asmussen
,
J.
, and
Wijaya
,
A.
, 2004, “
Microwave Stripline Applicators
,” U.S. Patent No. 6,759,808.
37.
Fredericks
,
R. M.
, 1971, “
An Experimental and Theoretical Study of Resonantly Sustained Plasma in Microwave Cavities
,” Ph.D. dissertation, Michigan State University.
38.
Rogers
,
J. R.
, 1982, “
Properties of Steady-State, High Pressure, Argon Microwave Discharges
,” Ph.D. dissertation, Michigan State University.
39.
Brake
,
M.
,
Rogers
,
J.
,
Peters
,
M.
,
Assmusen
,
J.
, and
Kerber
,
R.
, 1985, “
Electron Density Measurements of Argon Surface-Wave Discharges
,”
Plasma Chem. Plasma Process.
0272-4324,
5
, pp.
255
261
.
40.
Hemawan
,
K. W.
,
Romel
,
C. L.
,
Zuo
,
S.
,
Wichman
,
I. S.
,
Grotjohn
,
T. A.
, and
Asmussen
,
J.
, 2006, “
Microwave Plasma-Assisted Premixed Flame Combustion
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
141501
.
41.
Beenakker
,
C. I. M.
, 1976, “
A Cavity for Microwave-Induced Plasmas Operated in Helium and Argon at Atmospheric Pressure
,”
Spectrochim. Acta, Part B
0584-8547,
31
, pp.
483
486
.
42.
Beenakker
,
C. I. M.
,
Bosman
,
B.
, and
Bouwmans
,
P. W. J.
, 1978, “
An Assessment of Microwave-Induced Plasma Generated in Argon With a Cylindrical TM010 Cavity as an Excitation Source for Emission Spectrometric Analysis of Solutions
,”
Spectrochim. Acta, Part B.
0584-8547,
33
, pp.
373
381
.
43.
Moisan
,
M.
,
Sauve
,
G.
,
Zakrzewski
,
Z.
, and
Hubert
,
J.
, 1994, “
An Atmospheric Pressure Waveguide-Fed Microwave Plasma Torch: The TIA Design
,”
Plasma Sources Sci. Technol.
0963-0252,
3
, pp.
584
592
.
44.
Zakrzewski
,
Z.
, and
Moisan
,
M.
, 1995, “
Plasma Sources Using Long Linear Microwave Field Applicators: Main Features, Classification and Modelling
,”
Plasma Sources Sci. Technol.
0963-0252,
4
, pp.
379
397
.
45.
Fleisch
,
T.
,
Kabouzi
,
Y.
,
Moisan
,
M.
,
Pollak
,
J.
,
Castaños-Martínez
,
E.
,
Nowakowska
,
H.
, and
Zakrzewski
,
Z.
, 2007, “
Designing an Efficient Microwave-Plasma Source, Independent of Operating Conditions, at Atmospheric Pressure
,”
Plasma Sources Sci. Technol.
0963-0252,
16
, pp.
173
182
.
46.
Stonies
,
R.
,
Schermer
,
S.
,
Voges
,
E.
, and
Broekaert
,
J. A. C.
, 2004, “
A New Small Microwave Plasma Torch
,”
Plasma Sources Sci. Technol.
0963-0252,
13
, pp.
604
611
.
47.
Bilgic
,
A. M.
,
Prokisch
,
C.
,
Broekaert
,
J. A. C.
, and
Voges
,
E.
, 1998, “
Design and Modelling of a Modified 2.45 GHz Coaxial Plasma Torch for Atomic Spectrometry
,”
Spectrochim. Acta, Part B
0584-8547,
53
, pp.
773
777
.
48.
Kuo
,
S. P.
,
Bivolaru
,
D.
,
Lai
,
H.
,
Lai
,
W.
,
Popovic
,
S.
, and
Kessaratikoon
,
P.
, 2004, “
Characteristics of an Arc-Seeded Microwave Plasma Torch
,”
IEEE Trans. Plasma Sci.
0093-3813,
32
, pp.
1734
1741
.
49.
Kuo
,
S. P.
,
Bivolaru
,
D.
,
Williams
,
S.
, and
Carter
,
C. D.
, 2006, “
A Microwave-Augmented Plasma Torch Module
,”
Plasma Sources Sci. Technol.
0963-0252,
15
, pp.
266
275
.
50.
Jin
,
Q.
,
Zhu
,
C.
,
Borer
,
W.
, and
Hieftje
,
G. M.
, 1991, “
A Microwave Plasma Torch Assembly for Atomic Emission Spectrometry
,”
Spectrochim. Acta, Part B
0584-8547,
46
, pp.
417
430
.
51.
Uhm
,
H. S.
,
Hong
,
Y. C.
, and
Shin
,
D. H.
, 2006, “
A Microwave Plasma Torch and Its Applications
,”
Plasma Sources Sci. Technol.
0963-0252,
15
, pp.
S26
S34
.
52.
Brede
,
C.
,
Lundames
,
E.
,
Greobrokk
,
T.
, and
Pedersen-Bjergaard
,
S.
, 1998, “
Simultaneous Element-Selective Detection of C, F, Cl, Br, and I by Capillary Gas Chromatography Coupled With Micro Plasma Mass Spectrometry
,”
J. High Resolut. Chromatogr.
0935-6304,
21
, pp.
633
639
.
53.
Karanassios
,
V.
, 2004, “
Micro Plasmas for Chemical Analysis: Analytical Tools or Research Toys?
,”
Spectrochim. Acta, Part B
0584-8547,
59
, pp.
909
928
.
54.
Foest
,
R.
,
Schmidt
,
M.
, and
Becker
,
K.
, 2006, “
Micro Plasmas, An Emerging Field of Low Temperature Plasma Science and Technology
,”
Int. J. Mass. Spectrom.
1387-3806,
248
, pp.
87
102
.
55.
Becker
,
K. H.
,
Schoenbach
,
K. H.
, and
Eden
,
J. G.
, 2006, “
Micro Plasmas and Applications
,”
J. Phys. D
0022-3727,
39
, pp.
R55
R70
.
56.
Stoffels
,
E.
,
Flikweert
,
A. J.
,
Stoffels
,
W. W.
, and
Kroesen
,
G. M. W.
, 2002, “
Plasma Needle: A Non-Destructive Atmospheric Plasma Source for Fine Surface Treatment of (Bio) Materials
,”
Plasma Sources Sci. Technol.
0963-0252,
11
, pp.
383
388
.
57.
Guo
,
Y. -B.
, and
Hong
,
F. C.-N.
, 2003, “
Radio-Frequency Microdischarge Arrays for Large-Area Cold Atmospheric Plasma Generation
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
337
339
.
58.
Sankaran
,
R. M.
, and
Giapis
,
K. P.
, 2001, “
Maskless Etching of Silicon Using Patterned Microdischarges
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
593
595
.
59.
Sankaran
,
R. M.
, and
Giapis
,
K. P.
, 2003, “
High-Pressure Micro-Discharges in Etching and Deposition Applications
,”
J. Phys. D
0022-3727,
36
, pp.
2914
2921
.
You do not currently have access to this content.