This paper presents a 3D finite element (FE) model of a thread forming screw assembly process based on the ABAQUS 6.5.4 Explicit software program. The model consists of two principal elements: an M10×12 thread forming screw and a lower 4 mm plate into which the screw taps its threads. The aim was to develop a robust industrial dimensioning tool; the model can be extended to establish the preload and investigate other types of assemblies. A 45 deg sector, which represents 1/8 of the joint, was modeled to maintain a good compromise between calculation time and an accurate representation of the thread forming process. The intent of the study was to analyze the material flow throughout the thread forming process; a parametrical study was also conducted to identify the most influential process parameters. To validate the model, FE numerical simulation results are compared with published experimental results. The study shows that the lead hole diameter has an important influence on the screwing torque.

1.
NF_EN_ISO_7085 AFNOR
, 1999, “
Caractéristiques mécaniques et fonctionnement des vis autotaraudeuses par déformation à filetage métrique cémentées et revenues
,”
10
pp.
2.
Hayama
,
M.
, 1972, “
Estimation of Torque in Cold Forming of Internal Thread
,”
Bulletin of the Faculty of Engineering Yokohama National University
,
21
, pp.
77
90
.
3.
Henderer
,
W. E.
, and
Von Turkovich
,
B. F.
, 1974, “
Theory of the Cold Forming Tap
,”
CIRP Ann.
0007-8506,
23
, pp.
51
52
.
4.
Henderer
,
W. E.
, and
Von Turkovich
,
B. F.
, 1975, “
Theory and Experiments in Tapping
,” Proceedings, North American Manufacturing Research Conference,
3
, pp.
589
602
.
5.
Chowdhary
,
S.
,
Kapoor
,
S. G.
,
Ozdoganlar
,
O. B.
, and
DeVor
,
R. E.
, 2002, “
Modeling and Analysis of Internal Thread Forming
,” Society of Manufacturing Engineers, pp.
1
8
, Technical Paper No. MR02-172.
6.
Chowdhary
,
S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Modeling Forces Including Elastic Recovery for Internal Thread Forming
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
4
), pp.
681
688
.
7.
Seneviratne
,
L. D.
,
Ngemoh
,
F. A.
, and
Earles
,
S. W. E.
, 2000, “
An Experimental Investigation of Torque Signature Signals for Self-Tapping Screws
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
(
2
), pp.
399
410
.
8.
Seneviratne
,
L. D.
,
Ngemoh
,
F. A.
,
Earles
,
S. W. E.
, and
Althoefer
,
K. A.
, 2001, “
Theoretical Modelling of the Self-Tapping Screw Fastening Process
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
215
(
2
), pp.
135
154
.
9.
Fromentin
,
G.
, 2005, “
Etude mécanique et technologique du taraudage par déformation: Application aux aciers prétraités
,” MS thesis, ENSAM Cluny, France, p.
196
.
10.
Warrington
,
C.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2005, “
Experimental Investigation of Thread Formation in Form Tapping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
4
), pp.
829
836
.
11.
Subhash
,
G.
, and
Zhang
,
W.
, 2002, “
Investigation of the Overall Friction Coefficient in Single-Pass Scratch Test
,”
Wear
0043-1648,
252
(
1–2
), pp.
123
134
.
12.
Bucaille
,
J. L.
,
Felder
,
E.
, and
Hochstetter
,
G.
, 2001, “
Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials With the Three-Dimensional Finite Element Modeling
,”
Wear
0043-1648,
249
(
5–6
), pp.
422
432
.
13.
Martin
,
J. A.
, 1998, “
Mesh Density Study for Application to Large Deformation Rolling Process Evaluations
,”
Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Division
,
ASME
,
New York
, Vol.
373
, pp.
177
184
.
14.
Martin
,
J. A.
, 1998, “
Fundamental Finite Element Evaluation of a Three Dimensional Rolled Thread Form: Modelling and Experimental Results
,”
Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Division
,
ASME
,
New York
, Vol.
373
, pp.
457
467
.
15.
Domblesky
,
J. P.
, and
Feng
,
F.
, 2002, “
A Parametric Study of Process Parameters in External Thread Rolling
,”
J. Mater. Process. Technol.
0924-0136,
121
(
2–3
), pp.
341
349
.
16.
Domblesky
,
J. P.
, and
Feng
,
F.
, 2002, “
Two-Dimensional and Three-Dimensional Finite Element Models of External Thread Rolling
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
216
(
4
), pp.
507
517
.
17.
Pater
,
Z.
,
Gontarz
,
A.
, and
Weronski
,
W.
, 2004, “
New Method of Thread Rolling
,”
J. Mater. Process. Technol.
0924-0136,
153–154
(
1–3
), pp.
722
728
.
18.
Warrington
,
C.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2006, “
Finite Element Modeling for Tap Design Improvement in Form Tapping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
65
73
.
19.
ABAQUS Inc.
, ABAQUS Theory Manual 6.5., www.abaqus.comwww.abaqus.com.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metal Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh Symposium on Ballistics
, The Hague, The Netherlands, pp.
541
547
.
21.
Vural
,
M.
,
Rittel
,
D.
, and
Ravichandran
,
G.
, 2003, “
Large Strain Mechanical Behavior of 1018 Cold-Rolled Steel Over a Wide Range of Strain Rates
,”
Metall. Mater. Trans. A
1073-5623,
34
(
12
), pp.
2873
2885
.
22.
Kapoor
,
R.
, and
Nemat-Nasser
,
S.
, 1998, “
Determination of Temperature Rise During High Strain Rate Deformation
,”
Mech. Mater.
0167-6636,
27
, pp.
1
12
.
23.
Calloch
,
S.
,
Cognard
,
J. Y.
,
Dureisseix
,
D.
, and
Marquis
,
D.
, 2003,
Les systèmes de transmission de puissance: systèmes mécaniques et hydraulique
,
Lavoisier
.
You do not currently have access to this content.