Cautery is a process to coagulate tissues and seal blood vessels using heat. In this study, finite element modeling (FEM) was performed to analyze temperature distribution in biological tissue subject to a bipolar electrosurgical technique. FEM can provide detailed insight into the tissue heat transfer to reduce the collateral thermal damage and improve the safety of cautery surgical procedures. A coupled thermal-electric FEM module was applied with temperature-dependent electrical and thermal properties for the tissue. Tissue temperature was measured using microthermistors at different locations during the electrosurgical experiments and compared to FEM results with good agreement. The temperature- and compression-dependent electrical conductivity has a significant effect on temperature profiles. In comparison, the temperature-dependent thermal conductivity does not impact heat transfer as much as the temperature-dependent electrical conductivity. Detailed results of temperature distribution were obtained from the model. The FEM results show that the temperature distribution can be changed with different electrode geometries. A flat electrode was modeled that focuses the current density at the midline of the instrument profile resulting in higher peak temperature than that of the grooved electrode (105 versus 96°C).

1.
Pearce
,
J. A.
, 1986,
Electrosurgery
,
Wiley
,
New York
.
2.
Ong
,
A. M.
,
Su
,
L.-M.
,
Varkarakis
,
I.
,
Inagaki
,
T.
,
Link
,
R. E.
,
Bhayani
,
S. B.
,
Patriciu
,
A.
,
Crain
,
B.
, and
Walsh
,
P. C.
, 2004, “
Nerve Sparing Radical Prostatectomy:Effects of Hemostatic Energy Sources on the Recovery of Cavernous Nerve Function in a Canine Model
,”
J. Urol.
,
172
(
4
), pp.
1318
1322
.
3.
Brown
,
J. S.
,
Sawaya
,
G.
,
Thom
,
D. H.
, and
Grady
,
D.
, 2000, “
Hysterectomy and Urinary Incontinence: A Systematic Review
,”
Lancet
0140-6736,
356
(
9229
), pp.
535
539
.
4.
Walsh
,
P. C.
,
Marschke
,
P.
,
Ricker
,
D.
, and
Burnett
,
A. L.
, 2000, “
Patient-Reported Urinary Continence and Sexual Function After Anatomic Radical Prostatectomy
,”
Urology
0090-4295,
55
(
1
), pp.
58
61
.
5.
Harold
,
K. L.
,
Kercher
,
K. W.
,
Pollinger
,
H.
,
Matthews
,
B. D.
, and
Heniford
,
B. T.
, 2003, “
Comparison of Ultrasonic Energy, Bipolar Thermal Energy, and Vascular Clips for the Hemostasis of Small-, Medium-, and Large-Sized Arteries
,”
Surg. Endosc
0930-2794,
17
(
8
), pp.
1228
1230
.
6.
Berjano
,
E. J.
, 2006, “
Theoretical Modeling for Radiofrequency Ablation: State-of-the-Art and Challenges for the Future
,”
Biomed. Eng. Online
1475-925X,
5
(
24
).
7.
Berjano
,
E. J.
, and
Hornero
,
F.
, 2005, “
A Cooled Intraesophageal Balloon to Prevent Thermal Injury During Endocardial Surgical Radiofrequency Ablation of the Left Atrium: A Finite Element Study
,”
Phys. Med. Biol.
0031-9155,
50
(
20
), pp.
N269
279
.
8.
Tungjitkusolmun
,
S.
,
Tsai
,
J. Z.
,
Mahvi
,
D. M.
,
Webster
,
J. G.
,
Staelin
,
S. T.
,
Haemmerich
,
D.
,
Lee
,
F. T.
, and
Vorperian
,
V. R.
, 2002, “
Three-Dimensional Finite-Element Analyses for Radio-Frequency Hepatic Tumor Ablation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
(
1
), pp.
3
9
.
9.
Panescu
,
D.
,
Whayne
,
J. G.
,
Fleischman
,
S. D.
,
Mirotznik
,
M. S.
,
Swanson
,
D. K.
, and
Webster
,
J. G.
, 1995, “
Three-Dimensional Finite Element Analysis of Current Density and Temperature Distributions During Radio-Frequency Ablation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
42
(
9
), pp.
879
890
.
10.
Pearce
,
J. A.
, and
Magnusen
,
T. A.
, 1994, “
Numerical Models of Bipolar Electrode Electrosurgical Current Fields
,”
Engineering in Medicine and Biology Society, 1994, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual International Conference of the IEEE
, Vol.
2
, pp.
794
795
.
11.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
(
2
), pp.
93
122
.
12.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
13.
Chato
,
J. C.
, 1980, “
Heat Transfer to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
2
), pp.
110
118
.
14.
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
, 1984, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
4
), pp.
321
330
.
15.
Arkin
,
H.
,
Xu
,
L. X.
, and
Holmes
,
K. R.
, 1994, “
Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,”
IEEE Trans. Biomed. Eng.
0018-9294,
41
(
2
), pp.
97
107
.
16.
Haines
,
D. E.
, and
Watson
,
D. D.
, 1989, “
Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall
,”
Pacing Clin. Electrophysiol.
0147-8389,
12
(
6
), pp.
962
976
.
17.
Tungjitkusolmun
,
S.
,
Eung Je
,
W.
,
Hong
,
C.
,
Jang-Zern
,
T.
,
Vorperian
,
V. R.
, and
Webster
,
J. G.
, 2000, “
Finite Element Analyses of Uniform Current Density Electrodes for Radio-Frequency Cardiac Ablation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
47
(
1
), pp.
32
40
.
18.
Gabriel
,
C.
,
Gabriel
,
S.
, and
Corthout
,
E.
, 1996, “
The Dielectric Properties of Biological Tissues: I. Literature Survey
,”
Phys. Med. Biol.
0031-9155,
41
(
11
), pp.
2231
2249
.
19.
Oh
,
S. H.
,
Lee
,
S. Y.
,
Seo
,
J. K.
,
Kim
,
T.-S.
,
Lee
,
B. I.
,
Woo
,
E. J.
, and
Kwon
,
O.
, 2005, “
Electrical Conductivity Images of Biological Tissue Phantoms in MREIT
,”
Physiol. Meas
0967-3334,
26
(
2
), pp.
S279
288
.
20.
Valvano
,
J. W.
,
Cochran
,
J. R.
, and
Diller
,
K. R.
, 1985, “
Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-Heated Thermistors
,”
Int. J. Thermophys.
0195-928X,
6
(
3
), pp.
301
311
.
21.
Schwan
,
H. P.
, and
Foster
,
K. R.
, 1980, “
RF-Field Interactions With Biological Systems: Electrical Properties and Biophysical Mechanisms
,”
Proc. IEEE
0018-9219,
68
(
1
), pp.
104
113
.
22.
Schenk
,
O.
, and
Gartner
,
K.
, 2004, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
20
(
3
), pp.
475
487
.
23.
Muntinga
,
J. H.
, and
Visser
,
K. R.
, 1992, “
Estimation of Blood Pressure-Related Parameters by Electrical Impedance Measurement
,”
J. Appl. Physiol.
8750-7587,
73
(
5
), pp.
1946
1957
.
24.
González-Correa
,
C. A.
,
Kalia
,
N.
,
Haggie
,
S. J.
,
Stoddard
,
C. J.
,
Brown
,
B. H.
,
Smallwood
,
R. H.
,
Bardhan
,
K. D.
,
Stephenson
,
T. J.
, and
Slater
,
D. N.
, 1999, “
Virtual Biopsies in Barrett’s Esophagus Using an Impedance Probe
,”
Ann. N.Y. Acad. Sci.
0077-8923,
873
, pp.
313
321
.
25.
Richter
,
S.
,
Pistorius
,
G. A.
,
Menger
,
M. D.
,
Kollmar
,
O.
, and
Schilling
,
M. K.
, 2006, “
Efficacy and Quality of Vessel Sealing: Comparison of a Reusable with a Disposable Device and Effects of Clamp Surface Geometry and Structure
,”
Surg. Endosc
0930-2794,
20
(
6
), pp.
890
894
.
You do not currently have access to this content.