Biocompatible polymeric material with well-defined, interconnected porous structure plays an important role in many biomedical applications, such as tissue engineering, controlled drug release, biochemical sensing, and 3D cell culture for drug discovery. In this study, a novel fabrication process for porous polymer is developed using high intensity focused ultrasound. This acoustic method is solvent-free and capable of creating interconnected porous structures with varying topographical features at designed locations. An experimental study on the selective ultrasonic foaming technique is presented in this paper. We investigated the effects of major process variables, including ultrasound power, scanning speed, and gas concentration. Both pore size and interconnectivity of the created porous structures were examined. It was found that the pore size could be controlled with the scanning speed of the ultrasound insonation and that interconnected porous structures could be obtained using a partial saturation procedure. A concentration-dependent gas diffusion model was developed to predict the gas concentration profiles for partially saturated samples. A cell culture study was conducted to examine cell growth behavior in the fabricated porous structures.

1.
Griffith
,
L. G.
, 2002, “
Emerging Design Principles in Biomaterials and Scaffolds for Tissue Engineering
,”
Ann. N.Y. Acad. Sci.
0077-8923,
961
, pp.
83
89
.
2.
Brannon-Peppas
,
L.
, 1997, “
Polymers in Controlled Drug Delivery
,”
Medical Plastics Biomaterials Magazine
, Vol.
4
, pp.
34
45
.
3.
Krause
,
B.
,
Diekmann
,
K.
,
van der Vergt
,
N. F. A.
, and
Wessling
,
M.
, 2002, “
Open Nanoporous Morphologies From Polymeric Blends by Carbon Dioxide Foaming
,”
Macromolecules
0024-9297,
35
, pp.
1738
1745
.
4.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
5.
Yang
,
P.
,
Deng
,
T.
,
Zhang
,
D.
,
Feng
,
P.
,
Pine
,
D.
,
Chmelka
,
B. F.
,
Whitesides
,
G. M.
, and
Stuky
,
G. D.
, 1998, “
Hierarchically Ordered Oxides
,”
Science
0036-8075,
282
, pp.
2244
2246
.
6.
Chapekar
,
M. S.
, 2000, “
Tissue Engineering: Challenges and Opportunities
,”
J. Biomed. Mater. Res.
0021-9304,
53
(
6
), pp.
617
620
.
7.
Skalak
,
R.
, and
Fox
,
C. F.
, 1988, “
Tissue Engineering
,”
Granlibakken, Lake Tahoe, Proceeding Workshop
,
New York
, Liss, pp.
26
29
.
8.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
9.
National Institute of Health
, 1996, “
Biomimetics, Tissue Engineering and Biomaterials
,” Report of the Workshop on Biomimetics, Tissue Engineering, and Biomaterials.
10.
Sefton
,
M.
, 2002, “
Functional Considerations in Tissue-Engineering Whole Organs
,”
Ann. N.Y. Acad. Sci.
0077-8923,
961
, pp.
198
200
.
11.
Schwarz
,
K.
, and
Epple
,
M.
, 1998, “
Hierarchically Structured Polyglycolide—A Biomaterial Mimicking Natural Bone
,”
Macromol. Rapid Commun.
1022-1336,
19
, pp.
613
617
.
12.
Griffith
,
L. G.
, 2002, “
Emerging Design Principles in Biomaterials and Scaffolds for Tissue Engineering
,”
Ann. N.Y. Acad. Sci.
0077-8923,
961
, pp.
83
89
.
13.
Lin
,
J. H.
, and
Lu
,
A. Y. H.
, 1997, “
Role of Pharmacokinetics and Metabolism in Drug Discovery and Development
,”
Pharmacol. Rev.
0031-6997,
49
, pp.
403
449
.
14.
Mikos
,
A. G.
,
Bao
,
Y.
,
Cima
,
L. G.
,
Ingber
,
D. E.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1993, “
Preparation of Poly(glycolic acid) Bonded Fiber Structures for Cell Attachment and Transplantation
,”
J. Biomed. Mater. Res.
0021-9304,
27
, pp.
183
189
.
15.
Schwarz
,
K.
, and
Epple
,
M.
, 1998, “
Hierarchically Structured Polyglycolide—A Biomaterial Mimicking Natural Bone
,”
Macromol. Rapid Commun.
1022-1336,
19
, pp.
613
617
.
16.
Whang
,
K.
,
Thomas
,
C. H.
,
Healy
,
K. E.
, and
Nuber
,
G.
, 1995, “
A Novel Method to Fabricate Bioabsorbable Scaffolds
,”
Polymer
0032-3861,
36
, pp.
837
842
.
17.
Nam
,
Y. S.
, and
Park
,
T. G.
, 1999, “
Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Method
,”
Biomaterials
0142-9612,
20
, pp.
1783
1790
.
18.
Mooney
,
D. J.
,
Baldwin
,
D. F.
,
Suh
,
N. P.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1996, “
Novel Approach to Fabricate Porous Sponges of Poly(DL-lactic-co-glycolic acid) Without the Use of Organic Solvents
,”
Biomaterials
0142-9612,
17
, pp.
1417
1422
.
19.
Harris
,
L. D.
,
Kim
,
B.-S.
, and
Mooney
,
D. J.
, 1998, “
Open Pore Biodegradable Matrices Formed With Gas Foaming
,”
J. Biomed. Mater. Res.
0021-9304,
42
, pp.
396
402
.
20.
Mikos
,
A. G.
, and
Temenoff
,
J. S.
, 2000, “
Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering
,”
J. Biotechnol.
0168-1656,
3
(
2
), pp.
114
119
.
21.
Das
,
S.
,
Hollister
,
S. J.
,
Flanagan
,
C.
,
Adewunmi
,
A.
,
Bark
,
K.
,
Chen
,
C.
,
Ramaswamy
,
K.
,
Rose
,
D.
, and
Widjaja
,
E.
, 2003, “
Freeform Fabrication of Nylon-6 Tissue Engineering Scaffolds
,”
Rapid Prototyping J.
1355-2546,
9
(
1
), pp.
43
49
.
22.
Landers
,
R.
, and
Mülhaupt
,
R.
, 2000, “
Desktop Manufacturing of Complex Objects, Prototypes and Biomedical Scaffolds by Means of Computer-Assisted Design Combined With Computer-Guided 3D Plotting of Polymers and Reactive Oligomers
,”
Macromol. Mater. Eng.
1438-7492,
282
, pp.
17
21
.
23.
Ang
,
T. H.
,
Sultana
,
F. S. A.
,
Hutmacher
,
D. W.
,
Wong
,
Y. S.
,
Fuh
,
Y. H.
,
Mob
,
H. T.
,
Loh
,
H. T.
,
Burdet
,
E.
, and
Teoh
,
S. H.
, 2002, “
Fabrication of 3D Chitosan-Hydroxyapatite Scaffolds Using a Robotic Dispensing System
,”
Mater. Sci. Eng., C
0928-4931,
20
(
1–2
), pp.
35
42
.
24.
Leong
,
K. F.
,
Cheah
,
C. M.
, and
Chua
,
C. K.
, 2003, “
Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs
,”
Biomaterials
0142-9612,
24
, pp.
2363
2378
.
25.
Malinarič
,
S.
, 2004, “
Parameter Estimation in Dynamic Plane Source Method
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
807
813
.
27.
Klopffer
,
M. H.
, and
Flaconneche
,
B.
, 2001, “
Transport Properties of Gases in Polymers: Bibliographic Review
,”
Oil Gas Sci. Technol.
,
56
(
2
), pp.
223
244
.
28.
Wong
,
B.
,
Zhang
,
Z.
, and
Handa
,
Y. P.
, 1998, “
High-Precision Gravimetric Technique for Determining the Solubility and Diffusivity of Gases in Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
36
(
12
), pp.
2025
2032
.
29.
Balik
,
C. M.
, 1996, “
On the Extraction of Diffusion Coefficients From Gravimetric Data for Sorption of Small Molecules by Polymer Thin Films
,”
Macromolecules
0024-9297,
29
(
8
), pp.
3025
3029
.
You do not currently have access to this content.