Abstract

This paper proposes the usage of constrained convex optimization in improving the quality of the parameter estimates of a typical process plant with dead time from its time response data by incorporating system-specific constraints that are not considered in standard estimation methods. As the majority of the process plants are identified as second-order plus dead time (SOPDT) systems, the proposed method uses the same for establishing the optimization process. Traditional methods for parameter estimation in SOPDT systems have often relied on heuristic approaches or simplified assumptions, leading to suboptimal results. The proposed methodology augments the accuracy of the estimated values by leveraging the power of constrained convex optimization techniques, using Newton's Quadratic Model and Sequential Quadratic Programming (SQP), which provide a rigorous mathematical framework for parameter estimation. By incorporating system constraints, such as bounds on the parameters or stability requirements, it is ensured that the obtained parameter estimates adhere to physical and practical limitations. The proposed approach is demonstrated using simulations and on a real-time system, and the results show that it is effective not only in accurately estimating the parameters of the underdamped SOPDT systems but also works efficiently for parameter estimation of SOPDT systems in the presence of measurement noise. The efficacy of the proposed algorithm is verified by comparing it with similar published methods.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Huang
,
C. T.
, Jr.
, and
Clements
,
W. C.
,
1982
, “
Parameter Estimation for Second Order Plus Dead Time Model
,”
Ind. Eng. Chem. Process Des. Dev.
,
21
(
4
), pp.
601
603 801
.
2.
Rangaiah
,
G. P.
, and
Krishnaswamy
,
P. R.
,
1996
, “
Estimating Second-Order Dead Time Parameters From Underdamped Process Transients
,”
Chem. Eng. Sci.
,
51
(
7
), pp.
1149
1155
.
3.
Huang
,
C. T.
, and
Chou
,
C. J.
,
1994
, “
Estimation of the Under Damped Second-Order Parameters From the System Transient
,”
Ind. Eng. Chem. Res.
,
33
(
1
), pp.
174
176
.
4.
Granado
,
E.
,
Mata
,
E.
,
Revollar
,
S.
,
Colmenares
,
W.
, and
Pérez
,
O.
,
2004
, “
Study About System Identification for Second Order Process: An Open and Closed Loop Improvement
,”
Rev. Ing. UC
,
11
(
1
), pp.
41
47
.
5.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
1995
,
PID Controllers: Theory, Design and Tuning
, 2nd ed.,
Instrument Society of America
,
Research Triangle Park, NC
.
6.
Yuwana
,
M.
, and
Seborg
,
D. E.
,
1982
, “
A New Method for On-Line Tuning
,”
AIChE J.
,
28
(
3
), pp.
434
440
.
7.
Jutan
,
A.
, and
Rodriguez
,
E. S. I. I.
,
1984
, “
Extension of a New Method for On-Line Controller
,”
Can. J. Chem. Eng.
,
62
(
6
), pp.
802
807
.
8.
Suganda
,
P.
,
Rangaiah
,
G. P.
, and
Krishnaswamy
,
P. R.
,
1998
, “
Online Process Identification From Closed-Loop Tests Under PI Control
,”
Chem. Eng. Res. Des.
,
76
.
9.
Young
,
G. E.
,
Rao
,
K. S. S.
, and
Chatufale
,
V. S.
,
1995
, “
Block-Recursive Identification of Parameters and Delay in the Presence of Noise
,”
Trans. ASME
,
117
(
4
), pp.
600
607
.
10.
Cheres
,
E.
, and
Eydelzon
,
A.
,
2000
, “
Parameter Estimation of a Second Order Model in the Frequency Domain From Closed Loop Data
,”
Chem. Eng. Res. Des.
,
78
(
Part A
), pp.
293
298
.
11.
Wang
,
Q. G.
,
Zhang
,
Y.
, and
Guo
,
X.
,
2001
, “
Robust Closed-Loop Identification With Application to Auto-Tuning
,”
J. Process Control
,
11
(
5
), pp.
519
530
.
12.
Jin
,
Q. B.
,
Li
,
S. N.
,
Liu
,
Q.
, and
Wang
,
Q.
,
2013
, “
Closed-Loop Identification Using Laguerre Series Expansions for Second-Order Plus Time Delay Model
,”
Appl. Mech. Mater.
,
416–417
, pp.
822
833
.
13.
Wang
,
L.
, and
Cluett W
,
R.
,
1995
, “
Building Transfer Function Models From Noisy Step Response Data Using the Laguerre Network
,”
Chem. Eng. Sci.
,
50
(
1
), pp.
149
161
.
14.
Park
,
H. I.
,
Sung
,
S. W.
, and
Lee
,
I.
,
1997
, “
On-Line Process Identification Using the Laguerre Series for Automating Tuning the Proportional-Integral-Derivative Controller
,”
Ind. Eng. Chem. Res.
,
36
(
1
), pp.
101
111
.
15.
Deller
,
J.
,
Nayeri
,
M.
, and
Odeh
,
S. F.
,
1993
, “
Least-Square Identification with Error Bounds for Real-Time Signal Processing and Control
,”
Proc. IEEE
,
81
(
6
), pp.
815
849
.
16.
Hwang
,
S.
, and
Lai
,
S. T.
,
2004
, “
Use of Two-Stage Least-Squares Algorithms for Identification of Continuous Systems With Time Delay Based on Pulse Responses
,”
Automatica
,
40
(
9
), pp.
1561
1568
.
17.
Ding
,
F.
,
Liu
,
G.
, and
Liu
,
X. P.
,
2010
, “
Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems
,”
IEEE Trans. Automat. Contr.
,
55
(
8
), pp.
1976
1981
.
18.
Ding
,
J.
,
Shib
,
Y.
,
Wang
,
H.
, and
Ding
,
F.
,
2009
, “
A Modified Stochastic Gradient-Based Parameter Estimation Algorithm for Dual-Rate Sampled-Data Systems
,”
Digital Signal Process.
,
20
(
4
), pp.
1238
1247
.
19.
Wang
,
Q. G.
, and
Zhang
,
Y.
,
2001
, “
Robust Identification of Continuous Systems With Dead Time From Step Responses
,”
Automatica
,
37
(
3
), pp.
377
390
.
20.
Ding
,
F.
, and
Chen
,
T.
,
2004
, “
Hierarchical Gradient-Based Identification of Multivariable Discrete-Time Systems
,”
Automatica
,
41
(
2
), pp.
315
325
.
21.
Chen
,
L.
,
Han
,
L.
,
Huang
,
B.
, and
Liu
,
F.
,
2014
, “
Parameter Estimation for a Dual-Rate System With Time Delay
,”
ISA Trans
,
53
(
5
), pp.
1368
1376
.
22.
Honório
,
L. M.
,
Costa
,
E. B.
,
Oliveira
,
E. J.
,
Fernandes
,
D. A.
, and
Moreira Antonio
,
P. G. M.
,
2018
, “
Persistently-Exciting Signal Generation for Optimal Parameter Estimation of Constrained Nonlinear Dynamical Systems
,”
ISA Trans.
,
77
, pp.
231
241
.
23.
Anbarasan
,
K.
, and
Srinivasan
,
K.
,
2015
, “
Design of RTDA Controller for Industrial Process Using SOPDT Model With Minimum or Non-Minimum Zero
,”
ISA Trans.
,
57
, pp.
231
244
.
24.
Box
,
G.
, and
Tiao
,
G.
,
1973
,
Bayesian Inference in Statistical Analysis
,
Addison Wesley Reading
,
Massachusetts
.
25.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man. Cybern.
,
15
(
1
), pp.
116
132
.
26.
Prakash
,
J.
, and
Srinivasan
,
K.
,
2009
, “
Design of Nonlinear PID Controller and Nonlinear Model Predictive Controller for a Continuous Stirred Tank Reactor
,”
ISA Trans.
,
48
(
3
), pp.
273
282
.
27.
Nagy-Kiss
,
A. M.
,
Schutz
,
G.
, and
Ragot
,
J.
,
2015
, “
Parameter Estimation for Uncertain Systems Based on Fault Diagnosis Using Takagi–Sugeno Model
,”
ISA Trans.
,
56
, pp.
65
74
.
28.
Cui
,
R.
,
Wei
,
Y.
,
Cheng
,
S.
, and
Wang
,
Y.
,
2017
, “
An Innovative Parameter Estimation for Fractional Order System With Impulse Noise
,”
ISA Trans.
,
82
(
1
), pp.
120
129
.
29.
Rahili
,
S.
, and
Ren
,
W.
,
2016
, “
Distributed Continuous-Time Convex Optimization With Time-Varying Cost Function
,”
62
(
4
), pp.
1590
1605
.
30.
Bernstein
,
A.
,
Dall’Anese
,
E.
, and
Simonetto
,
A.
,
2019
, “
Online Primal-Dual Methods With Measurement Feedback for Time-Varying Convex Optimization
,”
IEEE Trans. Signal Process.
,
67
(
8
), pp.
1978
1991
.
31.
Cox
,
C.
,
Tindle
,
J.
, and
Burn
,
K.
,
2016
, “
A Comparison of Software-Based Approaches to Identifying FOPDT and SOPDT Model Parameters From Process Step Response Data
,”
Appl. Math. Modell.
,
40
(
1
), pp.
100
114
.
32.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2000
,
Tables of Integrals, Series, and Products
, 6th ed.,
Academic Press
,
San Diego, CA
, p.
1132
.
33.
Rodríguez-Abreo
,
O.
,
Rodríguez-Reséndiz
,
J.
,
Velásquez
,
F. A. C.
,
Ortiz Verdín
,
A. A.
,
Garcia-Guendulain
,
J. M.
, and
Garduño-Aparicio
,
M.
,
2021
, “
Estimation of Transfer Function Coefficients for Second-Order Systems via Metaheuristic Algorithms
,”
Sensors
,
21
(
13
), p.
4529
.
34.
Rudin
,
W.
,
1976
,
Principles of Mathematical Analysis
, 3rd ed.,
McGraw-Hill
,
New York
.
35.
Yan
,
R.
,
Liu
,
T.
,
Chen
,
F.
, and
Dong
,
S.
,
2015
, “
Gradient-Based Step Response Identification of Overdamped Processes With Time Delay
,”
Syst. Sci. Control Eng.
,
3
(
1
), pp.
504
513
.
36.
Rao
,
S. S.
,
2009
,
Engineering Optimization Theory and Practice
,
John Wiley
,
Hoboken, NJ
, pp.
363
398
.
37.
Ljung
,
L.
, and
Chen
,
T.
,
2013
, “
Convexity Issues in System Identification
,”
10th IEEE International Conference on Control and Automation (ICCA)
,
Hangzhou, China
,
June 12–14
.
You do not currently have access to this content.