Abstract

Aging models are necessary to accurately predict the state of health (SOH) evolution in lithium-ion battery systems when performing durability studies under realistic operations, specifically considering time-varying storage, cycling, and environmental conditions, while being computationally efficient. This article extends existing physics-based reduced-order capacity fade models that predict degradation resulting from the solid electrolyte interface (SEI) layer growth and loss of active material (LAM) in the graphite anode. Specifically, the physics of the degradation mechanisms and aging campaigns for various cell chemistries are reviewed to improve the model fidelity. In addition, a new calibration procedure is established relying solely on capacity fade data and results are presented including extrapolation/validation for multiple chemistries. Finally, a condition is integrated to predict the onset of lithium plating. This allows the complete cell model to predict the incremental degradation under various operating conditions, including fast charging.

References

1.
Salyer
,
Z.
,
D’Arpino
,
M.
, and
Canova
,
M.
,
2020
, “
Extended Reduced-Order Physics-Based Capacity Fade Model for Lithium Ion Battery Cells
,”
Dynamic Systems and Control Conference
,
Virtual Conference, Online
,
Oct. 5-7
.
2.
Loupe
,
N.
,
Doan
,
J.
,
Gurau
,
B.
, and
Smotkin
,
E.
,
2017
,
Electrochemical Energy Storage: Current and Emerging Technologies
,
Springer
,
New York
.
3.
Chalk
,
S.
, and
Miller
,
J.
,
2013
, “
Key Challenges and Recent Progress in Batteries, Fuel Cells, and Hydrogen Storage for Clean Energy Systems
,”
J. Power Sources
,
159
(
1
), pp.
73
80
. 10.1016/j.jpowsour.2006.04.058
4.
Nykvist
,
B.
, and
Nilsson
,
M.
,
2015
, “
Rapidly Falling Costs of Battery Packs for Electric Vehicles
,”
Nat. Climate Change
,
5
(
3
), pp.
329
332
. 10.1038/nclimate2564
5.
Ploehn
,
H. J.
,
Ramadass
,
P.
, and
White
,
R.
,
2004
, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A456
A462
. 10.1149/1.1644601
6.
Ramadass
,
P.
,
Haran
,
B.
,
Gomadam
,
P. M.
,
White
,
R.
, and
Popov
,
B. N.
,
2004
, “
Development of First Principles Capacity Fade Model for Li-Ion Cells
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A196
A203
. 10.1149/1.1634273
7.
Safari
,
M.
, and
Delacourt
,
C.
,
2011
, “
Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1436
A1447
. 10.1149/2.103112jes
8.
Ramasamy
,
R.
,
Lee
,
J.
, and
Popov
,
B.
,
2007
, “
Simulation of Capacity Loss in Carbon Electrode for Lithium-Ion Cells During Storage
,”
J. Power Sources
,
166
(
1
), pp.
266
272
. 10.1016/j.jpowsour.2006.12.086
9.
Cheng
,
Y.
, and
Verbrugge
,
M.
,
2010
, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
508
516
. 10.1149/1.3298892
10.
Christensen
,
J.
,
2010
, “
Modeling Diffusion-Induced Stress in Li-Ion Cells With Porous Electrodes
,”
J. Electrochem. Soc.
,
157
(
3
), pp.
366
380
. 10.1149/1.3269995
11.
Fu
,
R.
,
Choe
,
S.
,
Agubra
,
V.
, and
Fergus
,
J.
,
2015
, “
Development of a Physics-Based Degradation Model for Lithium Ion Polymer Batteries Considering Side Reactions
,”
J. Power Sources
,
278
(
1
), pp.
506
521
. 10.1016/j.jpowsour.2014.12.059
12.
Legrand
,
N.
,
Knosp
,
B.
,
Desprez
,
P.
,
Lapicque
,
F.
, and
Rael
,
S.
,
2014
, “
Physical Characterization of the Charging Process of a Li-Ion Battery and Prediction of Li Plating by Electrochemical Modeling
,”
J. Power Sources
,
245
(
1
), pp.
208
216
. 10.1016/j.jpowsour.2013.06.130
13.
Arora
,
P.
,
Doyle
,
M.
, and
White
,
R.
,
1999
, “
Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes
,”
J. Electrochem. Soc.
,
146
(
10
), pp.
3543
3553
. 10.1149/1.1392512
14.
Baker
,
D.
, and
Verbrugge
,
M.
,
2020
, “
Modeling Overcharge at Graphite Electrodes: Plating and Dissolution of Lithium
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013504
. 10.1149/2.0042001JES
15.
Ploehn
,
H.
,
Ramadass
,
P.
, and
White
,
R.
,
2004
, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A456
A462
. 10.1149/1.1644601
16.
Perkins
,
R.
,
Randall
,
A.
,
Zhang
,
X.
, and
Plett
,
G.
,
2012
, “
Controls Oriented Reduced Order Modeling of Lithium Deposition on Overcharge
,”
J. Power Sources
,
209
(
1
), pp.
318
325
. 10.1016/j.jpowsour.2012.03.003
17.
Xing
,
J.
,
Vora
,
A.
,
Hosing
,
V.
,
Saha
,
T.
,
Shaver
,
G.
,
Garcia
,
R. E.
,
Wasynczuk
,
O.
, and
Varigonda
,
S.
,
2017
, “
Physically-Based Reduced-Order Capacity Loss Model for Graphtie Anodes in Li-Ion Battery Cells
,”
J. Power Sources
,
342
(
1
), pp.
750
761
. 10.1016/j.jpowsour.2016.12.099
18.
Marcicki
,
J.
,
Canova
,
M.
,
Conlisk
,
A. T.
, and
Rizzoni
,
G.
,
2013
, “
Design and Parametrization Analysis of a Reduced-Order Electrochemical Model of Graphite/LiFePO4 Cells for SOC/SOH Estimation
,”
J. Power Sources
,
237
(
1
), pp.
310
324
. 10.1016/j.jpowsour.2012.12.120
19.
Guo
,
M.
,
Sikha
,
G.
, and
White
,
R.
,
2011
, “
Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A122
A132
. 10.1149/1.3521314
20.
Vetter
,
J.
,
Novak
,
P.
,
Wagner
,
M.
,
Veit
,
C.
,
Moller
,
K.-C.
,
Besenhard
,
J.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1
), pp.
269
281
. 10.1016/j.jpowsour.2005.01.006
21.
Delacourt
,
C.
, and
Safari
,
M.
,
2012
, “
Life Simulation of a Graphite/LiFePO4 Cell Under Cycling and Storage
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1283
A1291
. 10.1149/2.049208jes
22.
Naumann
,
M.
,
Schimpe
,
M.
,
Keil
,
P.
,
Hesse
,
H. C.
, and
Jossen
,
A.
,
2018
, “
Analysis and Modeling of Calendar Aging of a Commercial LiFePO4/Graphite Cell
,”
J. Energy Storage
,
17
(
1
), pp.
153
169
. 10.1016/j.est.2018.01.019
23.
Reniers
,
J.
,
Mulder
,
G.
,
Ober-Blobaum
,
S.
, and
Howey
,
D.
,
2018
, “
Improving Optimal Control of Grid-Connected Lithium-Ion Batteries Through More Accurate Battery and Degradation Modeling
,”
J. Power Sources
,
379
(
1
), pp.
91
102
. 10.1016/j.jpowsour.2018.01.004
24.
Diao
,
W.
,
Saxena
,
S.
, and
Pecht
,
M.
,
2019
, “
Accelerated Cycle Life Testing and Capacity Degradation Modeling of LiCoO2-Graphite Cells
,”
J. Power Sources
,
435
(
1
), p.
226830
. 10.1016/j.jpowsour.2019.226830
25.
Yang
,
X.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
(
1
), pp.
28
40
. 10.1016/j.jpowsour.2017.05.110
26.
Fan
,
G.
,
Pan
,
K.
,
Storti
,
G. L.
,
Canova
,
M.
,
Marcicki
,
J.
, and
Yang
,
X. G.
,
2017
, “
A Reduced-Order Multi-Scale, Multi-Dimensional Model for Performane Prediction of Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
A252
A264
. 10.1149/2.0791702jes
27.
Redondo-Iglesias
,
E.
,
Venet
,
P.
, and
Pelissier
,
S.
,
2017
, “
Eyring Acceleration Model for Predicting Calendar Ageing of Lithium-Ion Batteries
,”
J. Energy Storage
,
13
(
1
), pp.
176
183
. 10.1016/j.est.2017.06.009
28.
Keil
,
P.
,
Schuster
,
S. F.
,
Wilhelm
,
J.
,
Travi
,
J.
,
Hauser
,
A.
,
Karl
,
R. C.
, and
Jossen
,
A.
,
2016
, “
Calendar Aging of Lithium-Ion Batteries I. Impact of the Graphite Anode on Capacity Fade
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
1872
1880
. 10.1149/2.0411609jes
29.
Gilbert
,
J.
,
Shkrob
,
I.
, and
Abraham
,
D.
,
2017
, “
Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
389
399
. 10.1149/2.1111702jes
30.
Wang
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Sherman
,
E.
,
Soukiazian
,
S.
,
Verbrugge
,
M.
,
Tataria
,
H.
,
Musser
,
J.
, and
Finamore
,
P.
,
2011
, “
Cycle-Life Model for Graphite-LiFePO4 Cells
,”
J. Power Sources
,
196
(
1
), pp.
3942
3948
. 10.1016/j.jpowsour.2010.11.134
31.
A123 Systems
,
2019
.
26650 Lithium Ion Power Cell
.
32.
Birkl
,
C.
,
Roberts
,
M.
,
McTurk
,
E.
,
Bruce
,
P.
, and
Howey
,
D.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
(
1
), pp.
373
386
. 10.1016/j.jpowsour.2016.12.011
33.
Gao
,
Y.
,
Zhang
,
X.
,
Cheng
,
Q.
,
Guo
,
B.
, and
Yang
,
J.
,
2019
, “
Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries
,”
IEEE Access
,
7
(
1
), pp.
43511
43524
. 10.1109/access.2019.2906117
34.
Tang
,
L.
,
Rizzoni
,
G.
, and
Cordoba-Arenas
,
A.
,
2016
, “
Battery Life Extending Charging Strategy for Plug-In Hybrid Electric Vehicles and Battery Electric Vehicles
,”
IFAC
,
49
(
11
), pp.
70
76
.
35.
Zou
,
C.
,
Hu
,
X.
,
Wei
,
Z.
, and
Tang
,
X.
,
2017
, “
Electrothermal Dynamics-Conscious Lithium-Ion Battery Cell-Level Charging Management Via State-Monitored Predictive Control
,”
Energy
,
141
(
1
), pp.
250
259
. 10.1016/j.energy.2017.09.048
36.
Lin
,
X.
,
Hao
,
X.
,
Liu
,
Z.
, and
Jia
,
W.
,
2018
, “
Health Conscious Fast Charging of Li-Ion Batteries Via a Single Particle Model With Aging Mechanisms
,”
J. Power Sources
,
400
(
1
), pp.
305
316
. 10.1016/j.jpowsour.2018.08.030
37.
Pramanik
,
S.
, and
Anwar
,
S.
,
2016
, “
Electrochemical Model Based Charge Optimization for Lithium-Ion Batteries
,”
J. Power Sources
,
313
(
1
), pp.
164
177
. 10.1016/j.jpowsour.2016.01.096
You do not currently have access to this content.