Abstract

In numerous applications, particularly in aerospace (e.g., thermal protection systems), the research focuses on materials capable of thermal management, such as thermally insulating in one direction while conducting heat in its orthogonal direction. Anisotropic composite structures can meet such needs. This paper first defines two indices that quantify the thermal management performance of anisotropic structures: a thermal anisotropy degree (TAD), and a heat flux deviation degree (HFDD). Second, it compares several anisotropic composite structures: multilayer, fiber-reinforced composites, cross-shaped, and double cross-shaped. Effective thermal conductivities in the three principal directions were calculated for each structure using analytical and numerical homogenization techniques. Subsequently, the TAD, thermal anisotropy efficiency, and HFDD were determined. Calculations were repeated for varying filler fractions. The effect of the fiber shape was evaluated by repeating calculations with circular and square-shaped sections. For the square-shaped fiber, the influence of section rotation was also investigated. Moreover, the Monte Carlo optimization technique was applied solely to the cross-shaped structure to determine which angle between the two fibers maximizes the thermal anisotropy. Results demonstrated that the multilayer structure exhibits the highest anisotropy efficiency among all analyzed structures for each filler fraction; however, it has zero heat flux deviation degree. Thus, the multilayer structure is optimal for insulation; nevertheless, the surface exposed to flux would reach higher temperatures with respect to other structures. The cross-shaped structure shows the best compromise between the TAD (hence good insulation) and HFDD (thus good flow channeling capability and reduced exposed surface temperature due to the flux). For the fiber-reinforced and cross-shaped structures, it was observed that the fiber shape does not significantly influence the TAD. However, at the same filler fraction, the crossed square-shaped fiber exhibits a HFDD up to 10 times greater than the crossed circular-shaped one. Finally, the rotation of the square-shaped fiber has a minimal impact at low filler fractions but becomes more and more significant for filler fractions exceeding 20–30%.

References

1.
Gori
,
F.
,
Corasaniti
,
S.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2012
, “
Theoretical Prediction of Thermal Conductivity for Thermal Protection Systems
,”
Appl. Therm. Eng.
,
49
, pp.
124
130
.10.1016/j.applthermaleng.2011.07.012
2.
Bovesecchi
,
G.
,
Corasaniti
,
S.
,
Costanza
,
G.
,
Piccotti
,
F.
,
Potenza
,
M.
, and
Tata
,
M. E.
,
2022
, “
Heat Conduction and Microconvection in Nanofluids: Comparison Between Theoretical Models and Experimental Results
,”
Aerospace
,
9
(
10
), p.
608
.10.3390/aerospace9100608
3.
Corasaniti
,
S.
,
Bovesecchi
,
G.
, and
Gori
,
F.
,
2021
, “
Experimental Thermal Conductivity of Alumina Nanoparticles in Water with and without Sonication
,”
Int. J. Thermophys.
,
42
(
2
), p.
23
.10.1007/s10765-020-02771-z
4.
Potenza
,
M.
,
Cataldo
,
A.
,
Bovesecchi
,
G.
,
Corasaniti
,
S.
,
Coppa
,
P.
, and
Bellucci
,
S.
,
2017
, “
Graphene Nanoplatelets: Thermal Diffusivity and Thermal Conductivity by the Flash Method
,”
AIP Adv.
,
7
(
7
), p.
075214
.10.1063/1.4995513
5.
Bellucci
,
S.
,
Bovesecchi
,
G.
,
Cataldo
,
A.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Potenza
,
M.
,
2019
, “
Transmittance and Reflectance Effects During Thermal Diffusivity Measurements of GNP Samples With the Flash Method
,”
Materials
,
12
(
5
), p.
696
.10.3390/ma12050696
6.
Corasaniti
,
S.
,
Potenza
,
M.
, and
Petracci
,
I.
,
2023
, “
Preliminary Results of Heat Transfer and Pressure Drop Measurements on Al2O3/H2O Nanofluids Through a Lattice Channel
,”
Energies
,
16
(
9
), p.
3835
.10.3390/en16093835
7.
Potenza
,
M.
,
Petracci
,
I.
, and
Corasaniti
,
S.
,
2023
, “
Transient Thermal Behaviour of High Thermal Conductivity Graphene Based Composite Materials: Experiments and Theoretical Models
,”
Int. J. Therm. Sci.
,
188
, p.
108253
.10.1016/j.ijthermalsci.2023.108253
8.
Meng
,
Q.
,
Zhang
,
H.
,
Song
,
Y.
,
Yang
,
X.
,
Yu
,
J.
,
Li
,
J.
, and
Li
,
Y.
,
2021
, “
Efficient Thermal Transport Network Construction Within Epoxy Composites With Hybrid Ceramic Fillers
,”
Compos. Commun.
,
28
, p.
100943
.10.1016/j.coco.2021.100943
9.
Leclerc
,
W.
,
Ferguen
,
N.
,
Pélegris
,
C.
,
Bellenger
,
E.
,
Guessasma
,
M.
, and
Haddad
,
H.
,
2014
, “
An Efficient Numerical Model for Investigating the Effects of Anisotropy on the Effective Thermal Conductivity of Alumina/Al Composites
,”
Adv. Eng. Softw.
,
77
, pp.
1
12.
10.1016/j.advengsoft.2014.07.004
10.
Gori
,
F.
, and
Corasaniti
,
S.
,
2014
, “
Effective Thermal Conductivity of Composites
,”
Int. J. Heat Mass Transfer
,
77
, pp.
653
661
.10.1016/j.ijheatmasstransfer.2014.05.047
11.
Corasaniti
,
S.
, and
Gori
,
F.
,
2015
, “
Further Considerations on Anisotropic Thermal Efficiency of Symmetric Composites
,”
Int. J. Heat Mass Transfer
,
88
, pp.
836
843
.10.1016/j.ijheatmasstransfer.2015.04.111
12.
Norouzi
,
M.
,
Rahmani
,
H.
,
Birjandi
,
A. K.
, and
Joneidi
,
A. A.
,
2016
, “
A General Exact Analytical Solution for Anisotropic Non-Axisymmetric Heat Conduction in Composite Cylindrical Shells
,”
Int. J. Heat Mass Transfer
,
93
, pp.
41
56
.10.1016/j.ijheatmasstransfer.2015.09.072
13.
Wang
,
J.
,
Carson
,
J. K.
,
North
,
M. F.
, and
Cleland
,
D. J.
,
2006
, “
A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3075
3083
.10.1016/j.ijheatmasstransfer.2006.02.007
14.
Yang
,
X.
,
Wu
,
H.
,
Liu
,
C.
, and
Zhang
,
X.
,
2023
, “
A Novel Analytic Model for Prediction of the Anisotropic Thermal Conductivity in Polymer Composites Containing Aligned 1D Nanofillers
,”
Int. J. Therm. Sci.
,
184
, p.
107980
.10.1016/j.ijthermalsci.2022.107980
15.
Su
,
S.
,
Chen
,
J.
, and
Zhang
,
C.
,
2011
, “
Study on Performance of Anisotropic Materials of Thermal Conductivity
,”
Open Civ. Eng. J.
,
5
(
1
), pp.
168
172
.10.2174/1874149501105010168
16.
Ding
,
D.
,
Zhang
,
Q.
,
Qin
,
G.
, and
Chen
,
Y.
,
2023
, “
Offset Supper-Cell Model of Polymer Composites With Oriented Anisotropic Fillers for Thermal Conductivity Prediction Considering Shape Factor
,”
Int. J. Heat Mass Transfer
,
214
, p.
124373
.10.1016/j.ijheatmasstransfer.2023.124373
17.
Potenza
,
M.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Bovesecchi
,
G.
,
2021
, “
Numerical Simulation of Thermal Diffusivity Measurements with the Laser-Flash Method to Evaluate the Effective Property of Composite Materials
,”
ASME J. Heat Transfer
,
143
(
7
), p.
072102
.10.1115/1.4050995
18.
C. E.
Bryant
, and
J. L.
Rutledge
,
2021
, “
Conjugate Heat Transfer Simulations to Evaluate the Effect of Anisotropic Thermal Conductivity on Overall Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061013
.10.1115/1.4050328
19.
Peijian
,
D.
,
Li
,
C.
,
Xiang
,
D.
,
Junbo
,
X.
,
Junling
,
L.
,
Wei
,
J.
,
Xu
,
D.
,
Yifan
,
Z.
,
Ziyue
,
G.
, and
Xi
,
W.
,
2022
, “
Multiscale Analysis on the Anisotropic Thermal Conduction of Laminated Fabrics by Finite Element Method
,”
Compos. Struct.
,
292
,p.
115672
.10.1016/j.compstruct.2022.115672
20.
Fang
,
J.
,
Quan
,
Y.
, and
Dong
,
B.
,
2023
, “
Improved Unit Cells to Predict Anisotropic Thermal Conductivity of Three-Dimensional Four-Directional Braided Composites by Monte Carlo Method
,”
Int. J. Heat Mass Transfer
,
208
, p.
124084
.10.1016/j.ijheatmasstransfer.2023.124084
21.
Yang
,
C.
,
Qi
,
L.
,
Chao
,
X.
,
Wang
,
J.
, and
Ge
,
J.
,
2023
, “
Highly Thermal Conductive Csf/Mg Composites by in-Situ Constructing the Unidirectional Configuration of Short Carbon Fibers
,”
Chem. Eng. J.
,
470
, p.
144327
.10.1016/j.cej.2023.144327
22.
Tian
,
T.
, and
Cole
,
K. D.
,
2012
, “
Anisotropic Thermal Conductivity Measurement of Carbon-Fiber/Epoxy Composite Materials
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6530
6537
.10.1016/j.ijheatmasstransfer.2012.06.059
23.
Wang
,
H.
,
Koyanagi
,
T.
,
Arregui-Mena
,
D. J.
, and
Katoh
,
Y.
,
2022
, “
Anisotropic Thermal Diffusivity and Conductivity in SiC/SiC Tubes Studied by Infrared Imaging and X-Ray Computed Tomography
,”
Ceram. Int.
,
48
(
15
), pp.
21717
21727
.10.1016/j.ceramint.2022.04.153
24.
Zhu
,
Q.
,
Peng
,
J.
,
Guo
,
X.
,
Zhang
,
R.
,
Jiang
,
L.
,
Cheng
,
Q.
, and
Liang
,
W.
,
2022
, “
Accurate Determination of Anisotropic Thermal Conductivity for Ultrathin Composite Film
,”
Chin. Phys. B
,
31
(
10
), p.
108102
.10.1088/1674-1056/ac6ee5
25.
Drach
,
V.
,
Wiener
,
M.
,
Reichenauer
,
G.
,
Ebert
,
H.-P.
, and
Fricke
,
J.
, DOI: October
2007
, “
Determination of the Anisotropic Thermal Conductivity of a Carbon Aerogel–Fiber Composite by a Non-Contact Thermographic Technique
,”
Int. J. Thermophys.
,
28
(
5
), pp.
1542
1562
.10.1007/s10765-006-0145-z
26.
Jeon
,
P. S.
,
Kim
,
J. H.
,
Kim
,
H. J.
, and
Yoo
,
J.
,
2008
, “
Thermal Conductivity Measurement of Anisotropic Material Using Photothermal Deflection Method
,”
Thermochim. Acta
,
477
(
1–2
), pp.
32
37
.10.1016/j.tca.2008.08.004
27.
Zhang
,
H.
,
Wu
,
K.
,
Xiao
,
G.
,
Du
,
Y.
, and
Tang
,
G.
,
2021
, “
Experimental Study of the Anisotropic Thermal Conductivity of 2D Carbon-Fiber/Epoxy Woven Composites
,”
Compos. Struct.
,
267
, p.
113870
.10.1016/j.compstruct.2021.113870
28.
Pawlak
,
S.
,
Tokarski
,
M.
,
Ryfa
,
A.
,
Orlande
,
H. R. B.
, and
Adamczyk
,
W.
,
2022
, “
Measurement of the Anisotropic Thermal Conductivity of Carbon-Fiber/Epoxy Composites Based on Laser-Induced Temperature Field: Experimental Investigation and Numerical Analysis
,”
Int. Commun. Heat Mass Transfer
,
139
,p.
106401
.10.1016/j.icheatmasstransfer.2022.106401
29.
Yan
,
Z.
,
Zhang
,
X.
,
Gao
,
Y.
,
Kong
,
Z.
,
Ma
,
X.
,
Gou
,
Q.
,
Liang
,
H.
,
Cai
,
X.
,
Tan
,
H.
, and
Cai
,
J.
,
2023
, “
Anisotropy Induced in Magnetic Field in GNPs/Epoxy Composites Used as an Effective Heat Dissipation Electronic Packaging Material
,”
J. Appl. Polym. Sci.
,
140
(
42
), p.
e54541
.10.1002/app.54541
30.
Zhang
,
J.
,
Shim
,
S. H.
,
Cho
,
H.
,
Lee
,
D.
,
Lee
,
S. Y.
,
Ahn
,
J.
, and
Han
,
J. H.
,
2023
, “
Bimodal Reinforcement of Graphite Flake and Graphene Nanoplatelet in Cu Matrix Composites: Anisotropy of the Thermo-Mechanical Properties and Failure Mechanisms
,”
J. Mater. Res. Technol.
,
26
, pp.
2539
2559
.10.1016/j.jmrt.2023.08.060
31.
Zhao
,
Z.
,
Peng
,
D.
,
Zhi
,
Y.
,
Hao
,
X.
,
Wan
,
S.
,
Yue
,
M.
,
Kuang
,
J.
,
Xuan
,
W.
,
Zhu
,
L.
,
Cao
,
W.
, and
Wang
,
Q.
,
2023
, “
Synergistic Effects of Oriented AlN Skeletons and 1D SiC Nanowires for Enhancing the Thermal Conductivity of Epoxy Composites
,”
J. Alloys Compd.
,
963
, p.
171244
.10.1016/j.jallcom.2023.171244
You do not currently have access to this content.