Abstract

A quasi-explicit analytical model of quasi-steady (QS) water droplet heat- and mass-transfer, including radiation, in a prescribed gaseous environment with velocity slip, i.e., gas flow around the droplet, and high mass-transfer-rate blowing effects has been developed. The model is an extension of an atmospheric science model used for cloud and fog droplets in dilute and near-saturation conditions with negligible velocity slip (ventilation flow) and blowing. The new model includes the effects of ventilation flow, blowing, and change in relative humidity or supersaturation across the diffusion layer surrounding the droplet. Comparisons show significant improvement in accuracy over the conventional model, particularly for conditions of low relative humidity, low pressure, and high radiative flux.

References

1.
Roach
,
W. T.
,
1976
, “
On the Effect of Radiative Exchange on the Growth by Condensation of a Cloud or Fog Droplet
,”
Q. J. R. Meteorol. Soc.
,
102
(
432
), pp.
361
372
.10.1002/qj.49710243207
2.
Mills
,
A. F.
,
1995
,
Heat and Mass Transfer
,
Richard D. Irwin
,
Chicago, IL
.
3.
Mills
,
A. F.
, and
Coimbra
,
C. F. M.
,
2016
,
Heat Transfer
,
Temporal
,
San Diego, CA
.
4.
Mills
,
A. F.
, and
Coimbra
,
C. F. M.
,
2016
,
Mass Transfer
,
Temporal
,
San Diego, CA
.
5.
Fukuta
,
N.
, and
Walter
,
L. A.
,
1970
, “
Kinetics of Hydrometeor Growth From a Vapor-Spherical Model
,”
J. Atmos. Sci.
,
27
(
8
), pp.
1160
1172
.10.1175/1520-0469(1970)027<1160:KOHGFA>2.0.CO;2
6.
Spalding
,
D. B.
,
1960
, “
A Standard Formulation of the Steady Convective Mass Transfer Problem
,”
Int. J. Heat Mass Transfer
,
1
(
2–3
), pp.
192
207
.10.1016/0017-9310(60)90022-3
7.
Pruppacher
,
H. R.
, and
Klett
,
J. D.
,
1997
,
Microphysics of Clouds and Precipitation
,
Kluwer
,
Dordrecht, The Netherlands
, p.
714
.
8.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
2006
,
Atmospheric Chemistry and Physics
,
Wiley
,
Hoboken, NJ
.
9.
Davies
,
R.
,
1985
, “
Response of Cloud Supersaturation to Radiative Forcing
,”
J. Atmos. Sci.
,
42
(
24
), pp.
2820
2825
.10.1175/1520-0469(1985)042<2820:ROCSTR>2.0.CO;2
10.
Brewster
,
M. Q.
,
2015
, “
Evaporation and Condensation of Water Mist/Cloud Droplets With Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
88
, pp.
695
712
.10.1016/j.ijheatmasstransfer.2015.03.055
11.
Brewster
,
M. Q.
,
2016
, “
Corrigendum to ‘Evaporation and Condensation of Water Mist/Cloud Droplets With Thermal Radiation’ [International Journal of Heat and Mass Transfer 88 (2015) 695–712]
,”
Int. J. Heat Mass Transfer
,
96
, pp.
703
704
.10.1016/j.ijheatmasstransfer.2015.08.073
12.
Brewster
,
M. Q.
,
Li
,
X.
,
Roman
,
K. K.
,
McNichols
,
E. O.
, and
Rood
,
M. J.
,
2020
, “
Radiation-Induced Condensational Growth and Cooling of Cloud-Sized Mist Droplets
,”
J. Atmos. Sci.
,
77
(
10
), pp.
3585
3600
.10.1175/JAS-D-19-0288.1
13.
Brewster
,
M. Q.
, and
Li
,
X.
,
2021
, “
Analysis of Radiation-Induced Cooling and Growth of Mist and Cloud Droplets
,”
Int. J. Heat Mass Transfer
,
166
, p.
120674
.10.1016/j.ijheatmasstransfer.2020.120674
14.
Brewster
,
M. Q.
,
2017
, “
Water Evaporation and Condensation in Air With Radiation: The Self-Similar Spalding Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
, p.
081501
.10.1115/1.4036075
15.
Brewster
,
M. Q.
,
2022
, “
Theoretical Modeling of Levitated Clusters of Water Droplets Stabilized by Infrared Irradiation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
4
), p.
043701
.10.1115/1.4053415
16.
Sassen
,
K.
,
1981
, “
Infrared (10.6-μm) Radiation Induced Evaporation of Large Water Drops
,”
J. Opt. Soc. Am.
,
71
(
7
), pp.
887
891
.10.1364/JOSA.71.000887
17.
Yuge
,
T.
,
1960
, “
Experiments on Heat Transfer From Spheres Including Combined Natural and Forced Convection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
82
(
3
), pp.
214
220
.10.1115/1.3679912
You do not currently have access to this content.