Abstract

This paper presents extensive fluid flow and Heat Transfer studies conducted through an experimental setup followed by a detailed three-dimensional (3D) numerical analysis of the same setup using a commercial package for computational fluid dynamics (CFD), known as cfd-ace® for additive-manufactured counterflow AlSi10 Mg microchannel heat exchangers (MCHEs). A detailed 3D computational model of the experimentally tested MCHEs was built and analyzed using the commercial software cfd-ace® for the same experimentally tested operating conditions. The computational model results are in good agreement with experimental data of tested MCHE within +2% to +7% and ∼0% to −13.5% variation for cold and hot fluids for the entire set of design of experiments (DoEs). This percentage disagreement may be due to various factors, such as manufacturing deviation within tolerance, longitudinal conduction, variation in the thermal conductivity of the material after heat treatment, variation in environmental temperature, sensor deviation, and surface roughness of internal channels. Instead of Stainless steel (SST), AlSi10 Mg was used because of its lower manufacturing cost because AlSi10 Mg was lighter than SST, though its thermal conductivity is almost ∼8–10 times more than that of SST. A higher thermal conductivity is not good for MCHEs because it leads to higher longitudinal conduction, which eventually degrades the performance of MCHEs in terms of effectiveness. MCHE effectiveness is also reduced by ∼12% to 18% owing to longitudinal conduction from ideal effectiveness.

References

1.
Dostal, V., Driscoll, M. J., Hejzlar, P., and Todreas, N. E.,
2002
, “
A supercritical CO2 gas turbine power cycle for next-generation nuclear reactors
,”
ASME
Paper No. ICONE10-22192.10.1115/ICONE10?22192
2.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci.
,
2
(
4
), p.
611
.10.1007/s42452-020-2116-6
3.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
4.
Uday Kumar
,
A.
,
Javed
,
A.
, and
Dubey
,
S. K.
,
2018
, “
Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
346
(
1
), p.
012024
.10.1088/1757-899X/346/1/012024
5.
Alm
,
B.
,
Imke
,
U.
,
Knitter
,
R.
,
Schygulla
,
U.
, and
Zimmermann
,
S.
,
2008
, “
Testing and Simulation of Ceramic Micro Heat Exchangers
,”
Chem. Eng. J.
,
135
(
Suppl. 1
), pp.
S179
S184
.10.1016/j.cej.2007.07.005
6.
Kee
,
R. J.
,
Almand
,
B. B.
,
Blasi
,
J. M.
,
Rosen
,
B. L.
,
Hartmann
,
M.
,
Sullivan
,
N. P.
,
Zhu
,
H.
, et al.,
2011
, “
The Design, Fabrication, and Evaluation of a Ceramic Counterflow Microchannel Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
2004
2012
.10.1016/j.applthermaleng.2011.03.009
7.
Ionescu
,
V.
, and
Neagu
,
A. A.
,
2017
, “
Finite Element Method Analysis of a MEMS-Based Heat Exchanger With Different Channel Geometries
,”
Energy Procedia
,
112
, pp.
158
165
.10.1016/j.egypro.2017.03.1077
8.
Ranganayakulu
,
C.
,
Seetharamu
,
K. N.
, and
Sreevatsan
,
K. V.
,
1997
, “
The Effects of Longitudinal Heat Conduction in Compact Plate-Fin and Tube-Fin Heat Exchangers Using a Finite Element Method
,”
Int. J. Heat Mass Transf.
,
40
(
6
), pp.
1261
1277
.10.1016/S0017-9310(96)00182-2
9.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
, “
Compact Heat Exchangers
,” 3rd ed., Auflage (Reprint Edition),
Krieger Publishing Company
,
Malabar, FL
.
10.
McDonald
,
A. G.
, and
Magande
,
H. L.
,
2012
, “Fundamentals of Heat Exchanger Design,”
Introduction to Thermo-Fluids Systems Design
,
Wiley
,
West Sussex
.
11.
Takeuchi
,
Y.
,
Park
,
C.
,
Noborio
,
K.
,
Yamamoto
,
Y.
, and
Konishi
,
S.
,
2010
, “
Heat Transfer in SiC Compact Heat Exchanger
,”
Fusion Eng. Des
,
85
(
7–9
), pp.
1266
1270
.10.1016/j.fusengdes.2010.03.017
12.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
13.
Gholami, A., Wahid, M. A., and Mohammed, H. A.
,
2017
, “
Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns
,”
Int. J. Heat Mass Transfer
, 106, pp.
573–592
.10.1016/j.ijheatmasstransfer.2016.09.028
14.
Sheth
,
R.
,
Stephan
,
R.
,
Humble
,
P.
, and
Wegeng
,
R.
,
2011
, “
Performance Characterization of a Microchannel Liquid/Liquid Heat Exchanger Throughout an Extended Duration Life Test
,”
AIAA
Paper No. 2011-5205.10.2514/6.2011-5205
15.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.10.1016/j.ijthermalsci.2009.01.004
16.
Shakir
,
A. M.
,
Mohammed
,
A. K.
, and
Hasan
,
M. I.
,
2011
, “
Numerical Investigation of Counter Flow Microchannel Heat Exchanger With Slip Flow Heat Transfer
,”
Int. J. Therm. Sci
,
50
(
11
), pp.
2132
2140
.10.1016/j.ijthermalsci.2011.05.021
17.
Ramana Murthy
,
K. V.
,
Ranganayakulu
,
C.
, and
Ashok Babu
,
T. P.
,
2017
, “
Condensation Heat Transfer and Pressure Drop of R-134a Saturated Vapour Inside a Brazed Compact Plate Fin Heat Exchanger With Serrated Fin
,”
Heat Mass Transf. Stoffuebertragung
,
53
(
1
), pp.
331
341
.10.1007/s00231-016-1827-0
18.
Chennu
,
R.
,
2018
, “
Numerical Analysis of Compact Plate-Fin Heat Exchangers for Aerospace Applications
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
2
), pp.
395
412
.10.1108/HFF-08-2016-0313
19.
Jegan
,
C. D.
, and
Azhagesan
,
N.
,
2018
, “
A Novel Investigation of Heat Transfer Characteristics in Rifled Tubes
,”
Heat Mass Transf. Stoffuebertragung
,
54
(
5
), pp.
1503
1509
.10.1007/s00231-017-2247-5
20.
Kays
,
W. M.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple-Tube Systems
,”
Trans. Am. Soc. Mech. Eng.
,
72
(
8
), pp.
1067
1074
.10.1115/1.4016919
21.
Sélo
,
R. R.
,
Catchpole-Smith
,
S.
,
Maskery
,
I.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2020
, “
On the Thermal Conductivity of AlSi10 Mg and Lattice Structures Made by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
34
, p.
101214
.10.1016/j.addma.2020.101214
22.
Fattahi
,
M.
,
Vaferi
,
K.
,
Vajdi
,
M.
,
Moghanlou
,
F. S.
,
Namini
,
A. S.
, and
Asl
,
M. S.
,
2020
, “
Aluminum Nitride as an Alternative Ceramic for Fabrication of Microchannel Heat Exchangers: A Numerical Study
,”
Ceram. Int.
,
46
(
8
), pp.
11647
11657
.10.1016/j.ceramint.2020.01.195
23.
Mazaheri
,
N.
,
Bahiraei
,
M.
, and
Razi
,
S.
,
2021
, May 1;“
Two-Phase Analysis of Nanofluid Flow Within an Innovative Four-Layer Microchannel Heat Exchanger: Focusing on Energy Efficiency Principle
,”
Powder Technol.
,
383
, pp.
484
497
.10.1016/j.powtec.2021.01.045
24.
Jamshidmofid
,
M.
, and
Bahiraei
,
M.
,
2021
, “
Hydrothermal Performance of Single and Hybrid Nanofluids in Left-Right and Up-Down Wavy Microchannels Using Two-Phase Mixture Approach
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105752
.10.1016/j.icheatmasstransfer.2021.105752
25.
Dang
,
T.
,
Teng
,
J. T.
, and
Chu
,
J. C.
,
2010
, “
A Study on the Simulation and Experiment of a Microchannel Counter-Flow Heat Exchanger
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2163
2172
.10.1016/j.applthermaleng.2010.05.029
26.
Dang
,
T.
, and
Teng
,
J. T.
,
2011
, “
The Effects of Configurations on the Performance of Microchannel Counter-Flow Heat Exchangers–An Experimental Study
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3946
3955
.10.1016/j.applthermaleng.2011.07.045
27.
Pandey
,
V. K.
,
Negi
,
V. P. S.
, and
Ranganayakulu
,
C.
,
2024
, “
An In-Depth Comparison of Straight and Wavy Microchannel Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051007
.10.1115/1.4064985
28.
Pandey
,
V. K.
,
Negi
,
V. P. S.
, and
Ranganayakulu
,
C.
,
2024
, “
Comparative Study of Straight and Venturi Channel Cross Sections of Microchannel Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
9
), p.
091007
.10.1115/1.4065636
29.
Holman
,
J. P.
, “
Experimental Methods for Engineers
,” 7th ed.,
Tata McGraw-Hill, New York, NY
.
30.
Yan
,
K.
,
Deng
,
H.
,
Xiao
,
Y.
,
Wang
,
J.
, and
Luo
,
Y.
,
2024
, “
Thermo-Hydraulic Performance Evaluation Through Experiment and Simulation of Additive Manufactured Gyroid-Structured Heat Exchanger
,”
Appl. Therm. Eng.
,
241
, pp.
122402
209
.10.1016/j.applthermaleng.2024.122402
31.
Ali
,
U.
,
Fayazfar
,
H.
,
Ahmed
,
F.
, and
Toyserkani
,
E.
,
2020
, “
Internal Surface Roughness Enhancement of Parts Made by Laser Powder-Bed Fusion Additive Manufacturing
,”
Vaccum
,
177
, p.
109314
.10.1016/j.vacuum.2020.109314
32.
Liang
,
D.
,
Shi
,
C.
,
Li
,
W.
,
Chen
,
W.
, and
Chyu
,
M.
,
2023
, “
Design, Flow Characteristics and Performance Evaluation of Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces
,”
Int. J. Heat Mass Transfer
,
201
, p.
123620
.10.1016/j.ijheatmasstransfer.2022.123620
33.
Gao
,
S.
,
Qu
,
S.
,
Ding
,
J.
,
Liu
,
H.
, and
Song
,
X.
,
2023
, “
Influence of Cell Size and Its Gradient on Thermo-Hydraulic Characteristics of Triply Periodic Minimal Surface Heat Exchangers
,”
Appl. Therm. Eng.
,
232
, p.
121098
.10.1016/j.applthermaleng.2023.121098
You do not currently have access to this content.