Abstract

In this study, Y-shaped micromixers with mixing chamber design optimized as rotation and chaotic advection in the fluid domain increase with the chamber. Motivated by the advantages of Y-shaped mixers, a parametric study was performed for inlet angles (α, β), inlet channel eccentricities (x-ecc, z-ecc) and length scale ratios (L1/L2, D1/D2, and Vsp). z-eccentricity is introduced in addition to x-eccentricity to create a design that further enhances the swirl and chaotic advection inside mixing chamber for the first time. The results reveal that the maximum mixing efficiency can be achieved for Reynolds number of 81 and α, β, x-ecc, z-ecc, D1/D2, and L1/L2 values of 210°, 60°, 20 μm, 20 μm, 1.8, and 4, respectively. In addition, the proposed Y-shaped micromixer leads to a lower pressure drop (at least 50% reduction for all Reynolds numbers) in comparison to competing design. The maximum reduction in pressure drop is 72% less than the curved-straight-curved (CSC) (Re = 81) with mixing efficiency of 88% and pressure drop of 9244.4 Pa. Overall, an outstanding mixing efficiency was offered over a wide range of Reynolds numbers with distinctly low pressure drop and a compact micromixer design, which could be beneficial for a wide variety of applications where volume and pumping power are limited.

References

1.
Yuan
,
S.
,
Jiang
,
B.
,
Jiang
,
F.
,
Drummer
,
D.
, and
Zhou
,
M.
,
2022
, “
Numerical and Experimental Investigation of Mixing Enhancement in the Passive Planar Mixer With Bent Baffles
,”
Int. J. Heat Mass Transfer
,
191
, p.
122815
.10.1016/j.ijheatmasstransfer.2022.122815
2.
Zhang
,
Y.
, and
Chen
,
X.
,
2022
, “
The Mixing Performance of Passive Micromixers With Smart-Rhombic Units
,”
J. Dispersion Sci. Technol.
,
43
(
3
), pp.
439
445
.10.1080/01932691.2020.1842759
3.
Zeraatkar
,
M.
,
de Tullio
,
M. D.
, and
Percoco
,
G.
,
2021
, “
Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers
,”
Micromachines
,
12
(
8
), p.
858
.10.3390/mi12080858
4.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2023
, “
Investigation of Conjugate Effects on Forced Convection in Diamond (Diverging–Converging) Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
7
), p.
072502
.10.1115/1.4056691
5.
Wang
,
H.
,
Balasubramaniam
,
L.
,
Marshall
,
S. D.
,
Jin
,
X.
,
Arayanarakool
,
R.
,
Seng Lee
,
P.
, and
Chen
,
P. C. Y.
,
2018
, “
Numerical Study of Heat Transfer Enhancement of Roll-to-Roll Microchannel Heat Exchangers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
6
), p.
061801
.10.1115/1.4038910
6.
Meghdadi Isfahani
,
A. H.
,
2017
, “
Parametric Study of Rarefaction Effects on Micro- and Nanoscale Thermal Flows in Porous Structures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
9
), p.
092601
.10.1115/1.4036525
7.
Yong
,
J. Q.
, and
Teo
,
C. J.
,
2014
, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
4
), p.
041704
.10.1115/1.4026090
8.
Lee
,
C.-Y.
,
Chang
,
C.-L.
,
Wang
,
Y.-N.
, and
Fu
,
L.-M.
,
2011
, “
Microfluidic Mixing: A Review
,”
Int. J. Mol. Sci.
,
12
(
5
), pp.
3263
3287
.10.3390/ijms12053263
9.
Sudarsan
,
A. P.
, and
Ugaz
,
V. M.
,
2006
, “
Fluid Mixing in Planar Spiral Microchannels
,”
Lab a Chip
,
6
(
1
), pp.
74
82
.10.1039/B511524H
10.
Rahbarshahlan
,
S.
,
Ghaffarzadeh Bakhshayesh
,
A.
,
Rostamzadeh Khosroshahi
,
A.
, and
Aligholami
,
M.
,
2021
, “
Interface Study of the Fluids in Passive Micromixers by Altering the Geometry of Inlets
,”
Microsyst. Technol.
,
27
(
7
), pp.
2791
2802
.10.1007/s00542-020-05067-2
11.
Kim
,
H. J.
, and
Beskok
,
A.
,
2009
, “
Numerical Modeling of Chaotic Mixing in Electroosmotically Stirred Continuous Flow Mixers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
131
(
9
), p.
092403
.10.1115/1.3139109
12.
Luong
,
T.-D.
,
Phan
,
V.-N.
, and
Nguyen
,
N.-T.
,
2011
, “
High-Throughput Micromixers Based on Acoustic Streaming Induced by Surface Acoustic Wave
,”
Microfluid. Nanofluid.
,
10
(
3
), pp.
619
625
.10.1007/s10404-010-0694-0
13.
Jeon
,
H.
,
Massoudi
,
M.
, and
Kim
,
J.
,
2017
, “
Magneto-Hydrodynamics-Driven Mixing of a Reagent and a Phosphate-Buffered Solution: A Computational Study
,”
Appl. Math. Comput.
,
298
, pp.
261
271
.10.1016/j.amc.2016.11.026
14.
Zhang
,
K.
,
Ren
,
Y.
,
Hou
,
L.
,
Feng
,
X.
,
Chen
,
X.
, and
Jiang
,
H.
,
2018
, “
An Efficient Micromixer Actuated by Induced-Charge Electroosmosis Using Asymmetrical Floating Electrodes
,”
Microfluid. Nanofluid.
,
22
(
11
), p.
130
.10.1007/s10404-018-2153-2
15.
Kunti
,
G.
,
Bhattacharya
,
A.
, and
Chakraborty
,
S.
,
2017
, “
Rapid Mixing With High-Throughput in a Semi-Active Semi-Passive Micromixer
,”
Electrophoresis
,
38
(
9–10
), pp.
1310
1317
.10.1002/elps.201600393
16.
Wang
,
S.
,
Huang
,
X.
, and
Yang
,
C.
,
2012
, “
Microfluidic Bubble Generation by Acoustic Field for Mixing Enhancement
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
5
), p.
051014
.10.1115/1.4005705
17.
Li
,
T.
, and
Chen
,
X.
,
2017
, “
Numerical Investigation of 3D Novel Chaotic Micromixers With Obstacles
,”
Int. J. Heat Mass Transfer
,
115
, pp.
278
282
.10.1016/j.ijheatmasstransfer.2017.07.067
18.
Sudarsan
,
A. P.
, and
Ugaz
,
V. M.
,
2006
, “
Multivortex Micromixing
,”
Proc. Natl. Acad. Sci.
,
103
(
19
), pp.
7228
7233
.10.1073/pnas.0507976103
19.
Agarwal
,
T.
, and
Wang
,
L.
,
2023
, “
Mixing in a Misaligned Serpentine Micromixer With Flow Splitting and Recombination
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
3
), p.
032502
.10.1115/1.4055348
20.
Alijani
,
H.
,
Özbey
,
A.
,
Karimzadehkhouei
,
M.
, and
Koşar
,
A.
,
2019
, “
Inertial Micromixing in Curved Serpentine Micromixers With Different Curve Angles
,”
Fluids
,
4
(
4
), p.
204
.10.3390/fluids4040204
21.
Altay
,
R.
,
Yetisgin
,
A. A.
,
Erdem
,
K.
, and
Koşar
,
A.
,
2021
, “
The Effect of Varying Radius of Curvature on Mixing in Elliptical Spiral Microchannels
,”
Chem. Eng. Process. - Process Intensif.
,
164
, p.
108401
.10.1016/j.cep.2021.108401
22.
Ahmadi
,
V. E.
,
Butun
,
I.
,
Altay
,
R.
,
Bazaz
,
S. R.
,
Alijani
,
H.
,
Celik
,
S.
,
Warkiani
,
M. E.
, and
Koşar
,
A.
,
2021
, “
The Effects of Baffle Configuration and Number on Inertial Mixing in a Curved Serpentine Micromixer: Experimental and Numerical Study
,”
Chem. Eng. Res. Des.
,
168
, pp.
490
498
.10.1016/j.cherd.2021.02.028
23.
Mariotti
,
A.
,
Galletti
,
C.
,
Brunazzi
,
E.
, and
Salvetti
,
M. V.
,
2019
, “
Steady Flow Regimes and Mixing Performance in Arrow-Shaped Micro-Mixers
,”
Phys. Rev. Fluids
,
4
(
3
), p.
034201
.10.1103/PhysRevFluids.4.034201
24.
Shih
,
T. R.
, and
Chung
,
C. K.
,
2008
, “
A High-Efficiency Planar Micromixer With Convection and Diffusion Mixing Over a Wide Reynolds Number Range
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
175
183
.10.1007/s10404-007-0238-4
25.
Bayareh
,
M.
,
Ashani
,
M. N.
, and
Usefian
,
A.
,
2020
, “
Active and Passive Micromixers: A Comprehensive Review
,”
Chem. Eng. Process. - Process Intensif.
,
147
, p.
107771
.10.1016/j.cep.2019.107771
26.
Tsai
,
R. T.
, and
Wu
,
C. Y.
,
2011
, “
An Efficient Micromixer Based on Multidirectional Vortices Due to Baffles and Channel Curvature
,”
Biomicrofluidics
,
5
(
1
), p.
014103
.10.1063/1.3552992
27.
Mariotti
,
A.
,
Galletti
,
C.
,
Brunazzi
,
E.
, and
Salvetti
,
M. V.
,
2021
, “
Unsteady Flow Regimes in Arrow-Shaped Micro-Mixers With Different Tilting Angles
,”
Phys. Fluids
,
33
(
1
), p.
012008
.10.1063/5.0033765
28.
Cetkin
,
E.
, and
Miguel
,
A. F.
,
2019
, “
Constructal Branched Micromixers With Enhanced Mixing Efficiency: Slender Design, Sphere Mixing Chamber and Obstacles
,”
Int. J. Heat Mass Transfer
,
131
, pp.
633
644
.10.1016/j.ijheatmasstransfer.2018.11.091
29.
Cetkin
,
E.
, and
Miguel
,
A. F.
,
2021
, “
Asymmetric Y-Shaped Micromixers With Spherical Mixing Chamber for Enhanced Mixing Efficiency and Reduced Flow Impedance
,”
J. Appl. Fluid Mech.
,
14
(
5
), p.
1389
.10.47176/JAFM.14.05.32317
30.
Tan
,
Z.
,
Shi
,
H.
,
Zheng
,
Y.
, and
Cao
,
Y.
,
2023
, “
A 3D Homogeneous Microreactor With High Mixing Intensity at Wide Re Range for MOF Preparation and POCT Application
,”
Chem. Eng. J.
,
476
, p.
146481
.10.1016/j.cej.2023.146481
31.
Yang
,
H.
,
Li
,
G.
,
Liu
,
H.
,
Pan
,
H.
,
Quan
,
J.
,
Chen
,
Y.
,
Xu
,
J.
,
Liu
,
Y.
,
Li
,
L.
, and
Wang
,
J.
,
2023
, “
A Three-Dimensional Double-Helical Structure Microfluidic Chip With Efficient Mixing
,”
Microfluid. Nanofluid.
,
27
(
7
), p.
48
.10.1007/s10404-023-02658-z
32.
Wang
,
Z.
,
Yan
,
X.
,
Zhou
,
Q.
,
Wang
,
Q.
,
Zhao
,
D.
, and
Wu
,
H.
,
2023
, “
A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer With Extraordinary Mixing Performance
,”
Anal. Chem.
,
95
(
23
), pp.
8850
8858
.10.1021/acs.analchem.3c00335
33.
Liu
,
B.
,
Chen
,
C.
,
Ran
,
B.
,
Shi
,
L.
,
Wei
,
J.
,
Jin
,
J.
, and
Zhu
,
Y.
,
2023
, “
Numerical Investigation of Flow Patterns and Mixing Characteristics in a 3D Micromixer With Helical Elements Over Wide Reynolds Numbers
,”
Adv. Theory Simul.
,
6
(
5
), p.
2200671
.10.1002/adts.202200671
34.
Kurnia
,
J. C.
,
Ahmadihosseini
,
A.
, and
Sasmito
,
A. P.
,
2022
, “
Flow Behavior and Mixing of Single-Phase Laminar Newtonian Miscible Fluid in T-Junction Micromixer With Twisted Mixing channel - A Numerical Study
,”
Chem. Eng. Process. - Process Intensif.
,
181
, p.
109171
.10.1016/j.cep.2022.109171
35.
Juraeva
,
M.
, and
Kang
,
D. J.
,
2022
, “
Mixing Enhancement of a Passive Micromixer With Submerged Structures
,”
Micromachines
,
13
(
7
), p.
1050
.10.3390/mi13071050
36.
Abdelgawad
,
M.
,
Wu
,
C.
,
Chien
,
W. Y.
,
Geddie
,
W. R.
,
Jewett
,
M. A. S.
, and
Sun
,
Y.
,
2011
, “
A Fast and Simple Method to Fabricate Circular Microchannels in Polydimethylsiloxane (PDMS)
,”
Lab a Chip
,
11
(
3
), pp.
545
551
.10.1039/C0LC00093K
37.
COMSOL Inc.
,
2018
, “
COMSOL Multiphysics® v 5.4
,” Stockholm, Sweden, accessed Jan. 12, 2024, www.comsol.com
38.
Web Plot Digitizer
, 2023, “WebPlotDigitizer,” accessed Jan. 12, 2024, https://automeris.io/WebPlotDigitizer/
You do not currently have access to this content.