Abstract

Supercritical carbon dioxide (sCO2) can be utilized as a working fluid in various thermal systems including large-scale power cycles; portable power production units, centralized coolant systems, and standalone cooling devices. However, the lack of accurate prediction tools such as heat transfer coefficient correlations and insufficient research studies about the mechanisms controlling heat transfer processes are hindering its practical realization for key energy and cooling systems. The overall objective of this study is to extend fundamental knowledge about heat transfer and fluid dynamic processes in conduits pertinent to sCO2 with an emphasis on flow direction and inclination effects. This paper presents the study on effects of gravity, buoyancy on sCO2 flow at temperatures near and away from the pseudo-critical temperature. The experimental setup consists of a high temperature and pressure sCO2 heat transfer loop and flow testing facility. Recently, researched sCO2 heat exchangers can have tubes oriented at different angles such as 45 deg or 90 deg to horizontal. For optimized design of efficient and cost-effective turbomachinery components utilizing sCO2 as the heat transfer fluid, an understanding of convective heat transfer inside a tube/pipe is equally as important as external heat transfer. This paper presents an experimental and numerical study on sCO2 heat transfer at various inclinations with angles ranging from 0 deg (horizontal) to 90 deg (vertical) along with upward and downward flow direction with different inlet temperatures. Thermocouple-based temperature measurement is utilized at multiple locations within the test section axially and circumferentially to study the temperature distributions on the tube surface. Computational fluid dynamics (CFD) simulations have been performed using ANSYS Fluent to complement experimental data. The CFD and experiment have been analyzed against the well-known Gnielinski Nusselt number correlation.

References

1.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Cycles for Power Generation in CSP Solar Tower Plants
,”
Appl. Energy
,
204
, pp.
1007
1017
.10.1016/j.apenergy.2017.05.121
2.
Wu
,
C.
,
Xu
,
X.
,
Li
,
Q.
,
Li
,
J.
,
Wang
,
S.
, and
Liu
,
C.
,
2020
, “
Proposal and Assessment of a Combined Cooling and Power System Based on the Regenerative Supercritical Carbon Dioxide Brayton Cycle Integrated With an Absorption Refrigeration Cycle for Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112527
.10.1016/j.enconman.2020.112527
3.
Ma
,
Y.
,
Liu
,
Z.
, and
Tian
,
H.
,
2013
, “
A Review of Transcritical Carbon Dioxide Heat Pump and Refrigeration Cycles
,”
Energy
,
55
, pp.
156
172
.10.1016/j.energy.2013.03.030
4.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
071601
.10.1115/1.4039446
5.
Wright
,
S.
,
Davidson
,
C.
, and
Scammell
,
W.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International sCO2 Symposium
,
San Antonio, TX
, Mar. 29, pp.
28
31
.
6.
Gabriel-Ohanu
,
E.
,
Khadse
,
A.
,
Vesely
,
L.
,
Raju
,
N.
,
Otto
,
M.
,
Kapat
,
J. S.
, and
Harris
,
K.
,
2021
, “
Optimization of a Primary Heat Exchanger for Flibe Molten Salt Nuclear Reactor With sCO2 Power System
,”
ASME
Paper No. GT2021-59939.10.1115/GT2021-59939
7.
Huai
,
X.
,
Koyama
,
S.
, and
Zhao
,
T.
,
2005
, “
An Experimental Study of Flow and Heat Transfer of Supercritical Carbon Dioxide in Multi-Port Mini Channels Under Cooling Conditions
,”
Chem. Eng. Sci.
,
60
(
12
), pp.
3337
3345
.10.1016/j.ces.2005.02.039
8.
Yang
,
C.
,
Xu
,
J.
,
Wang
,
X.
, and
Zhang
,
W.
,
2013
, “
Mixed Convective Flow and Heat Transfer of Supercritical CO2 in Circular Tubes at Various Inclination Angles
,”
Int. J. Heat Mass Transfer
,
64
, pp.
212
223
.10.1016/j.ijheatmasstransfer.2013.04.033
9.
Schnurr
,
N.
,
1969
, “
Heat Transfer to Carbon Dioxide in the Immediate Vicinity of the Critical Point
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
91
(
1
), pp.
16
20
.10.1115/1.3580086
10.
Adebiyi
,
G. A.
, and
Hall
,
W.
,
1976
, “
Experimental Investigation of Heat Transfer to Supercritical Pressure Carbon Dioxide in a Horizontal Pipe
,”
Int. J. Heat Mass Transfer
,
19
(
7
), pp.
715
720
.10.1016/0017-9310(76)90123-X
11.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2018
, “
Experimental Investigation on Validity of Buoyancy Parameters to Heat Transfer of CO2 at Supercritical Pressures in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
222
230
.10.1016/j.expthermflusci.2017.11.024
12.
Bae
,
Y.-Y.
, and
Kim
,
H.-Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
13.
Pidaparti
,
S. R.
,
McFarland
,
J. A.
,
Mikhaeil
,
M. M.
,
Anderson
,
M. H.
, and
Ranjan
,
D.
,
2015
, “
Investigation of Buoyancy Effects on Heat Transfer Characteristics of Supercritical Carbon Dioxide in Heating Mode
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
3
), p.
031001
.10.1115/1.4029592
14.
Tanimizu
,
K.
, and
Sadr
,
R.
,
2016
, “
Experimental Investigation of Buoyancy Effects on Convection Heat Transfer of Supercritical CO2 Flow in a Horizontal Tube
,”
Heat Mass Transfer
,
52
(
4
), pp.
713
726
.10.1007/s00231-015-1580-9
15.
Guo
,
P.
,
Liu
,
S.
,
Yan
,
J.
,
Wang
,
J.
, and
Zhang
,
Q.
,
2020
, “
Experimental Study on Heat Transfer of Supercritical CO2 Flowing in a Mini Tube Under Heating Conditions
,”
Int. J. Heat Mass Transfer
,
153
, p.
119623
.10.1016/j.ijheatmasstransfer.2020.119623
16.
Liao
,
S.
, and
Zhao
,
T.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
17.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,” Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors,
Hemisphere Publishing Corporation
,
New York
, pp.
563
612
.
18.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2002
, “
Nist Standard Reference Database 23: Refprop Version 9.0
,”
National Institute of Standards and Technology
,
Boulder, CO
.
19.
Khadse
,
A.
,
Vesely
,
L.
,
Sherwood
,
J.
,
Curbelo
,
A.
,
Goyal
,
V.
,
Raju
,
N.
,
Kapat
,
J. S.
, and
Kim
,
W.
,
2020
, “
Study of Buoyancy Effects on Supercritical CO2 Heat Transfer in Circular Pipes
,”
ASME
Paper No. GT2020-15523.10.1115/GT2020-15523
20.
Franssen
,
J.-M.
, and
Real
,
P. V.
,
2012
, Fire Design of SteelStructures: Eurocode 1: Actions on Structures; Part 1-2: General Actions–Actions on Structures Exposed to Fire; Eurocode 3: Design of Steel Structures; Part 1-2: General Rules–Structural Fire Design,
John Wiley Ernst & Sohn
,
Berlin, Germany
.
21.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
, Introduction to Heat Transfer,
John Wiley & Sons
,
New York
.
22.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
23.
Test Uncertainty
,
A.
,
2006
, “
PTC 19.1-2005
,”
Am. Soc. Mech. Eng.
,
3
, pp.
10016
5990
.
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.https://www.asme.org/getmedia/2534a386-a1b0-4059-89e7-7422a92c982f/35537.pdf
25.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
.10.1016/j.apenergy.2015.10.080
26.
Lei
,
X.
,
Zhang
,
Q.
,
Zhang
,
J.
, and
Li
,
H.
,
2017
, “
Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes
,”
Appl. Sci.
,
7
(
12
), p.
1260
.10.3390/app7121260
27.
Wang
,
X.
,
Xiang
,
M.
,
Huo
,
H.
, and
Liu
,
Q.
,
2018
, “
Numerical Study on Nonuniform Heat Transfer of Supercritical Pressure Carbon Dioxide During Cooling in Horizontal Circular Tube
,”
Appl. Therm. Eng.
,
141
, pp.
775
787
.10.1016/j.applthermaleng.2018.06.019
You do not currently have access to this content.