Abstract

Pool boiling heat transfer performance has been evaluated on a binary oxide based nanoparticles coated surface. Electrophoretic deposition techniques were used for TiO2 and Al2O3 nanoparticles coatings on polished copper substrates. Four different surfaces have been prepared by varying the deposition time 2.5, 5, 10, and 15 min which are referred to in the text as coated surface (CS)#1, CS#2, CS#3, and CS#4, respectively. The surface characteristics like surface roughness, morphology, and wettability have changed after the coating. It has been observed that all the deposited surfaces are hydrophobic, whereas polished copper surfaces are hydrophilic by nature. The boiling heat transfer performance of surface CS#2 is superior to the other three surfaces, while CS#4 is the worst. The highest enhancement in boiling heat transfer coefficient (BHTC) observed for CS#2 is 62.3%, corresponding to a heat flux of ∼220 kW/m2. The coating layer thickness was also observed to be an important parameter, apart from surface roughness, wettability, and morphology, which may be a cause for heat transfer deterioration, if it crosses a limiting value. In this study the limiting value of coating layer thickness discovered ∼15 μm experimentally.

References

1.
Betz
,
A. R.
,
Jenkins
,
J.
,
Chang-Jin
,
Kim
,
C.
, and
Attinger
,
D.
2013, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.10.1016/j.ijheatmasstransfer.2012.10.080
2.
Cao
,
Z.
,
Wu
,
Z.
,
Pham
,
A.-D.
,
Yang
,
Y.
,
Abbood
,
S.
,
Falkman
,
P.
,
Ruzgas
,
T.
,
Albèr
,
C.
, and
Sundén
,
B.
,
2019
, “
Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis
,”
Int. J. Heat Mass Transfer
,
133
(
2019
), pp.
548
560
.10.1016/j.ijheatmasstransfer.2018.12.140
3.
Ferjancic
,
K.
, and
Golobic
,
I.
,
2002
, “
Surface Effects on Pool Boiling CHF
,”
Exp. Therm. Fluid Sci.
,
25
, pp.
565
571
.10.1016/S0894-1777(01)00104-2
4.
Kumar
,
N.
,
Ghosh
,
P.
, and
Shukla
,
P.
,
2021
, “
A Review on Formation, Characterization, and Role of Micro/Nanotextured Surfaces on Boiling Heat Transfer Performance
,”
Multiphase Sci. Technol.
,
33
(
2
), pp.
1
27
.10.1615/MultScienTechn.2021037072
5.
Kim
,
J.
,
Jun
,
S.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.10.1016/j.ijheatmasstransfer.2016.05.067
6.
Phan
,
H. T.
,
Bertossi
,
R.
,
Caney
,
N.
,
Marty
,
P.
, and
Colasson
,
S.
,
2012
, “
A Model to Predict the Effect of Surface Wettability on Critical Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1500
1504
.10.1016/j.icheatmasstransfer.2012.10.019
7.
Kumar
,
N.
,
Jothi
,
T. S.
, and
Selvaraju
,
N.
,
2017
, “
Effect of Nanoparticle Deposition Rate on Critical Heat Flux in Pool Boiling
,”
J. Eng. Res.
,
5
(
4
), pp.
209
224
.https://kuwaitjournals.org/jer/index.php/JER/article/view/1620
8.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5459
5471
.10.1016/j.ijheatmasstransfer.2009.06.032
9.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nanoporous Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4274
4279
.10.1016/j.ijheatmasstransfer.2010.05.054
10.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Direct Growth of Copper Nanowires on a Substrate for Boiling Applications
,”
Micro Nano Lett.
,
6
(
7
), pp.
563
566
.10.1049/mnl.2011.0136
11.
Shi
,
B.
,
Wang
,
Y.-B.
, and
Chen
,
K.
,
2015
, “
Pool Boiling Heat Transfer Enhancement With Copper Nanowire Arrays
,”
Appl. Therm. Eng.
,
75
, pp.
115
121
.10.1016/j.applthermaleng.2014.09.040
12.
Friend
,
M. T.
, et al.,
2016
, “
Critical Heat Flux Maxima Resulting From the Controlled Morphology of Nanoporous Hydrophilic Surface Layers
,”
Appl. Phys. Lett.
,
108
, p.
243102
.10.1063/1.4954012
13.
Ray
,
M.
,
Deb
,
S.
, and
Bhaumik
,
S.
,
2016
, “
Pool Boiling Heat Transfer of Refrigerant R-134a on TiO2 Nano Wire Arrays Surface
,”
Appl. Therm. Eng.
,
107
, pp.
1294
1303
.10.1016/j.applthermaleng.2016.07.080
14.
Song
,
G.
,
Davies
,
P. A.
,
Wen
,
J.
,
Xu
,
G.
, and
Quan
,
Y.
,
2018
, “
Nucleate Pool Boiling Heat Transfer of SES36 Fluid on Nanoporous Surfaces Obtained by Electrophoretic Deposition of Al2O3
,”
Appl. Therm. Eng.
,
141
, pp.
143
152
.10.1016/j.applthermaleng.2017.12.068
15.
Mehdikhani
,
A.
,
Moghadasi
,
H.
, and
Saffari
,
H.
,
2020
, “
An Experimental Investigation of Pool Boiling Augmentation Using Four-Step Electrodeposited Micro/Nanostructured Porous in Distilled Water
,”
Int. J. Mech. Sci.
,
187
, p.
105924
.10.1016/j.ijmecsci.2020.105924
16.
White
,
S. B.
,
Shih
,
A. J.
, and
Pipe
,
K. P.
,
2011
, “
Boiling Surface Enhancement by Electrophoretic Deposition of Particles From a Nanofluid
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4370
4375
.10.1016/j.ijheatmasstransfer.2011.05.008
17.
Rahimian
,
A.
,
Kazeminejad
,
H.
,
Khalafi
,
H.
,
Akhavan
,
A.
, and
Mirvakili
,
S. Y.
,
2019
, “
Boiling Heat Transfer and Critical Heat Flux Enhancement Using Electrophoretic Deposition of SiO2 Nanofluid
,”
Sci. Technol. Nucl. Install.
,
2019
, pp.
1
10
.10.1155/2019/1272156
18.
Miao
,
L.
,
Cai
,
S.
, and
Xiao
,
Z.
,
2010
, “
Preparation and Characterization of Nanostructured ZnO Thin Film by Electrophoretic Deposition From Zno Colloidal Suspensions
,”
J. Alloys Compd.
,
490
(
1–2
), pp.
422
426
.10.1016/j.jallcom.2009.10.021
19.
Santillan
,
M. J.
,
Membrives
,
F.
,
Quaranta
,
N.
, and
Boccaccini
,
A. R.
,
2008
, “
Characterization of TiO2 Nanoparticle Suspensions for Electrophoretic Deposition
,”
J. Nanopart. Res.
,
10
(
5
), pp.
787
793
.10.1007/s11051-007-9313-8
20.
Mohammadi
,
H. R.
,
Taghvaei
,
H.
, and
Rabiee
,
A.
,
2022
, “
Experimental Study of Pool Boiling on Hydrophilic and Hydrophobic Thin Films Deposited on Copper Surfaces Using Atmospheric Cold Plasma
,”
Int. J. Therm. Sci.
,
175
, p.
107474
.10.1016/j.ijthermalsci.2022.107474
21.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.10.1016/j.ijheatmasstransfer.2015.02.008
22.
Bourdon
,
B.
,
Marco
,
P. D.
,
Rioboo
,
R.
,
Marengo
,
M.
, and
Coninck
,
J. D.
,
2013
, “
Enhancing the Onset of Pool Boiling by Wettability Modification on Nanometrically Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
11
15
.10.1016/j.icheatmasstransfer.2013.04.009
23.
Malavasi
,
I.
,
Bourdon
,
B.
,
Marco
,
P. D.
,
Coninck
,
J. D.
, and
Marengo
,
M.
,
2015
, “
Appearance of a Low Superheat “Quasi-Leidenfrost” Regime for Boiling on Superhydrophobic Surfaces
,”
Int. Commun. Heat Mass Transfer
,
63
, pp.
1
7
.10.1016/j.icheatmasstransfer.2015.01.012
24.
Moghadasi
,
H.
, and
Saffari
,
H.
,
2021
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer Improvement Utilizing Micro/Nanoparticles Porous Coating on Copper Surface
,”
Int. J. Mech. Sci.
,
196
, p.
106270
.10.1016/j.ijmecsci.2021.106270
25.
Jo
,
H.
,
Kim
,
S.
,
Park
,
H. S.
, and
Kim
,
M. H.
,
2014
, “
Critical Heat Flux and Nucleate Boiling on Several Heterogeneous Wetting Surfaces: Controlled Hydrophobic Pattern on Hydrophilic Substrate
,”
Int. J. Multiphase
,
62
, pp.
101
109
.10.1016/j.ijmultiphaseflow.2014.02.006
26.
Kumar
,
N.
,
Ghosh
,
P.
, and
Shukla
,
P.
,
2021
, “
Development of an Approximate Model for the Prediction of Bubble Departure Diameter in Pool Boiling of Water
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105531
.10.1016/j.icheatmasstransfer.2021.105531
27.
Nam
,
Y.
,
Wu
,
J.
,
Warrier
,
G.
, and
Ju
,
Y. S.
, “
Experimental and Numerical Study of Single Bubble Dynamics on a Hydrophobic Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
131
, p.
121004
.10.1115/1.3216038
28.
Abdulagatov
,
A. I.
,
Yan
,
Y.
,
Cooper
,
J. R.
,
Zhang
,
Y.
,
Gibbs
,
Z. M.
,
Cavanagh
,
A. S.
,
Yang
,
R. G.
,
Lee
,
Y. C.
, and
George
,
S. M.
,
2011
, “
Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance
,”
ACS Appl. Mater. Interfaces
,
3
(
12
), pp.
4593
4601
.10.1021/am2009579
29.
Muneeshwaran
,
M.
,
Srinivasan
,
G.
,
Muthukumar
,
P.
, and
Wang
,
C. C.
,
2021
, “
Role of Hybrid-Nanofluid in Heat Transfer Enhancement–A Review
,”
Int. Commun. Heat Mass Transfer
,
125
, p.
105341
.10.1016/j.icheatmasstransfer.2021.105341
30.
Gregg
,
D. C.
,
1952
, (Vogel, Arthur I.) Practical Organic Chemistry, ACS Publication, Burlington, VT, p.
320
.
31.
Rasheed
,
T.
,
Hussain
,
T.
,
Anwar
,
M. T.
,
Ali
,
J.
,
Rizwan
,
K.
,
Bilal
,
M.
,
Alshammari
,
F. H.
,
Alwadai
,
N.
, and
Almuslem
,
A. S.
,
2021
, “
Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications
,”
Front. Chem.
,
9
, p.
737033
.10.3389/fchem.2021.737033
32.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
33.
Wanatasanapan
,
V. V.
,
Abdullah
,
M. Z.
, and
Gunnasegaran
,
P.
,
2020
, “
Effect of TiO2-Al2O3 Nanoparticle Mixing Ratio on the Thermal Conductivity, Rheological Properties, and Dynamic Viscosity of Water-Based Hybrid Nanofluid
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
13781
13792
.10.1016/j.jmrt.2020.09.127
34.
Yagnem
,
A. R.
, and
Venkatachalapathy
,
S.
,
2019
, “
Heat Transfer Enhancement Studies in Pool Boiling Using Hybrid Nanofluids
,”
Thermochim. Acta
,
672
, pp.
93
100
.10.1016/j.tca.2018.11.014
35.
Lebrette
,
S.
,
Pagnoux
,
C.
, and
Abélard
,
P.
,
2006
, “
Fabrication of Titania Dense Layers by Electrophoretic Deposition in Aqueous Media
,”
J. Eur. Ceram. Soc.
,
26
(
13
), pp.
2727
2734
.10.1016/j.jeurceramsoc.2005.05.009
36.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electro-Deposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.10.1016/j.ijheatmasstransfer.2014.08.062
37.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool Boiling Heat Transfer, 1: Review of Parametric Effect of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
38.
Wu
,
Z.
,
Cao
,
Z.
, and
Sunden
,
B.
,
2019
, “
Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition
,”
Appl. Energy
,
249
, pp.
289
299
.10.1016/j.apenergy.2019.04.160
39.
Saeidi
,
D.
, and
Alemrajabi
,
A. A.
,
2013
, “
Experimental Investigation of Pool Boiling Heat Transfer and Critical Heat Flux of Nanostructured Surfaces
,”
Int. J. Heat Mass Transfer
,
60
, pp.
440
449
.10.1016/j.ijheatmasstransfer.2013.01.016
40.
Kim
,
J. H.
,
Simon
,
T. W.
, and
Viskanta
,
R.
,
1993
, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
1
), pp.
5
6
.10.1115/1.2910670
41.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling Liquids
,”
Trans. ASME
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
42.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling of Water From Plain and Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
967
977
.10.1016/j.expthermflusci.2006.10.006
43.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
44.
Dong
,
L.
,
Yunheng
,
L.
, and
Anjie
,
H.
,
2022
, “
Visualization of Boiling Heat Transfer on Copper Surface With Different Wettability
,”
J. Therm. Sci.
,
31
(
6
), pp.
1903
1913
.10.1007/s11630-022-1599-4
45.
Cole
,
R.
,
1974
, “
Boiling Nucleation
,”
Adv. Heat Transfer
,
10
, pp.
85
166
.10.1016/S0065-2717(08)70110-2
46.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer-Trans. ASME
,
91
(
2
), pp.
245
250
.10.1115/1.3580136
47.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S. H.
, and
Kim
,
M. H.
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
You do not currently have access to this content.