Abstract

In this paper, a comparative study of fluid flow behavior and thermal characteristics of sand particles has been carried out numerically and experimentally in bubbling fluidized beds for five-cone angles of the riser wall having 0 deg, 5 deg, 10 deg, 15 deg, and 20 deg. An Eulerian model with a k–ε turbulence model is used to explore the numerical analysis, and the findings are compared to those of the experiments. For the study, the inlet air velocity is fixed at 1.5 m/s with sand particles filled up to 30 cm to maintain bubbling conditions in the risers. The results indicate that increasing the cone angle up to 10 deg while maintaining the amount of bed materials constant leads to a reduction in pressure drop. The expansion of particles along the riser is observed to decrease with the increase in the cone angle up to 10 deg. The radial solid volume fraction profile transforms to a U shape from the W-type profile as the cone angle increases up to 10 deg. Correspondingly, the solid velocity is found to have an inverted U-type and W-shaped profile for the risers. The granular temperature is also found to increase with a decrease in the solid percentage at any location. The average bed temperature, interphase, and bed-to-wall heat transfer coefficient at a location of 10 cm axial height also increase with the cone angle increase up to 10 deg. As a result, the conical riser, when designed with a greater cone angle up to 10 deg, exhibits more efficiency in terms of heat transfer characteristics. The 3D simulation results are in strong concurrence with the experimental results in all investigations.

References

1.
Abdelmotalib
,
H. M.
,
Youssef
,
M. A. M.
,
Hassan
,
A. A.
,
Youn
,
S. B.
, and
Im
,
I.-T.
,
2015
, “
Heat Transfer Process in Gas–Solid Fluidized Bed Combustors: A Review
,”
Int. J. Heat Mass Transfer
,
89
, pp.
567
575
.10.1016/j.ijheatmasstransfer.2015.05.085
2.
Das
,
H. J.
,
Mahanta
,
P.
,
Saikia
,
R.
, and
Aamir
,
M. S.
,
2020
, “
Performance Evaluation of Drying Characteristics in Conical Bubbling Fluidized Bed Dryer
,”
Powder Technol.
,
374
, pp.
534
543
.10.1016/j.powtec.2020.06.051
3.
Das
,
H. J.
,
Saikia
,
R.
, and
Mahanta
,
P.
,
2022
, “
Effects of Spiral and Cone Angles on Drying Characteristics and Energy Consumption of Fluidized Bed Paddy Dryer
,”
Drying Technol.
,
40
(
5
), pp.
852
863
.10.1080/07373937.2020.1832512
4.
Teng
,
M. X. W.
, and
Lim
,
E. W. C.
,
2018
, “
Heat Transfer From an Immersed Tube in a Pulsating Fluidized Bed
,”
Appl. Therm. Eng.
,
143
, pp.
326
339
.10.1016/j.applthermaleng.2018.07.087
5.
Abdelmotalib
,
H. M.
,
Youssef
,
M. A.
,
Hassan
,
A. A.
,
Youn
,
S. B.
, and
Im
,
I.-T.
,
2015
, “
Numerical Study on the Wall to Bed Heat Transfer in a Conical Fluidized Bed Combustor
,”
Int. J. Precis. Eng. Manuf.
,
16
(
7
), pp.
1551
1559
.10.1007/s12541-015-0205-z
6.
Das
,
H. J.
,
Mahanta
,
P.
, and
Saikia
,
R.
,
2020
, “
A Future Trend on Research Scope of Numerical Simulation on Conical Fluidized Bed
,”
Handbook of Research on Developments and Trends in Industrial and Materials Engineering
,
IGI Global
, Hershey, PA, pp.
401
437
.
7.
Toh
,
K. H. B.
, and
Lim
,
E. W. C.
,
2019
, “
Dimensionless Numbers and Correlations for Characterizing Heat Transfer in a Pulsating Fluidized Bed
,”
Appl. Therm. Eng.
,
153
, pp.
448
462
.10.1016/j.applthermaleng.2019.03.039
8.
Armstrong
,
L. M.
,
Gu
,
S.
, and
Luo
,
K. H.
,
2010
, “
Study of Wall-to-Bed Heat Transfer in a Bubbling Fluidised Bed Using the Kinetic Theory of Granular Flow
,”
Int. J. Heat Mass Transfer.
,
53
(
21–22
), pp.
4949
4959
.10.1016/j.ijheatmasstransfer.2010.05.047
9.
Dong
,
N. H.
,
Armstrong
,
L. M.
,
Gu
,
S.
, and
Luo
,
K. H.
,
2013
, “
Effect of Tube Shape on the Hydrodynamics and Tube-to-Bed Heat Transfer in Fluidized Beds
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
472
479
.10.1016/j.applthermaleng.2012.08.018
10.
Das
,
H. J.
,
Saikia
,
R.
, and
Mahanta
,
P.
,
2021
, “
A Comparative Study on the Hydrodynamic and Heat Transfer Behaviour of Conical Fluidized Bed With That of a Columnar Pressurized Circulating Fluidized Bed
,”
International Conference on Recent Developments in Mechanical Engineering
, Silchar, India, Feb. 2–4, pp.
531
543
.10.1007/978-981-15-7711-6_53
11.
Lee
,
J. M.
, and
Lim
,
E. W. C.
,
2020
, “
Heat Transfer in a Pulsating Turbulent Fluidized Bed
,”
Appl. Therm. Eng.
,
174
, p.
115321
.10.1016/j.applthermaleng.2020.115321
12.
Rasteh
,
M.
,
Farhadi
,
F.
, and
Bahramian
,
A.
,
2015
, “
Hydrodynamic Characteristics of Gas–Solid Tapered Fluidized Beds: Experimental Studies and Empirical Models
,”
Powder Technol.
,
283
, pp.
355
367
.10.1016/j.powtec.2015.06.002
13.
Gan
,
L.
,
Lu
,
X.
, and
Wang
,
Q.
,
2014
, “
Experimental and Theoretical Study on Hydrodynamic Characteristics of Tapered Fluidized Beds
,”
Adv. Powder Technol.
,
25
(
3
), pp.
824
831
.10.1016/j.apt.2013.12.007
14.
Khani
,
M. H.
,
2011
, “
Models for Prediction of Hydrodynamic Characteristics of Gas–Solid Tapered and Mini-Tapered Fluidized Beds
,”
Powder Technol.
,
205
(
1–3
), pp.
224
230
.10.1016/j.powtec.2010.09.018
15.
Dora
,
D. T. K.
,
Panda
,
S. R.
,
Mohanty
,
Y. K.
, and
Roy
,
G. K.
,
2013
, “
Hydrodynamics of Gas–Solid Fluidization of a Homogeneous Ternary Mixture in a Conical Bed: Prediction of Bed Expansion and Bed Fluctuation Ratios
,”
Particuology
,
11
(
6
), pp.
681
688
.10.1016/j.partic.2013.02.009
16.
Sau
,
D. C.
,
Mohanty
,
S.
, and
Biswal
,
K. C.
,
2007
, “
Minimum Fluidization Velocities and Maximum Bed Pressure Drops for Gas–Solid Tapered Fluidized Beds
,”
Chem. Eng. J.
,
132
(
1–3
), pp.
151
157
.10.1016/j.cej.2007.01.036
17.
Padhi
,
R. K.
,
Dora
,
D. T. K.
,
Mohanty
,
Y. K.
,
Roy
,
G. K.
, and
Sarangi
,
B.
,
2016
, “
Hydrodynamics of Three-Phase Fluidization of Homogeneous Ternary Mixture in a Conical Conduit—Experimental and Statistical Analysis
,”
Chin. J. Chem. Eng.
,
24
(
10
), pp.
1335
1343
.10.1016/j.cjche.2016.05.032
18.
Jing
,
S.
,
Hu
,
Q.
,
Wang
,
J.
, and
Jin
,
Y.
,
2000
, “
Fluidization of Coarse Particles in Gas – Solid Conical Beds
,”
Chem. Eng. Process.
,
39
(
4
), pp.
379
387
.10.1016/S0255-2701(99)00103-8
19.
Biswal
,
K. C.
,
Bhowmik
,
T.
, and
Roy
,
G. K.
,
1984
, “
Prediction of Pressure Drop for a Conical Fixed Bed of Spherical Particles in Gas—Solid Systems
,”
Chem. Eng. J.
,
29
(
1
), pp.
47
50
.10.1016/0300-9467(84)80006-4
20.
Biswal
,
K. C.
,
Bhowmik
,
T.
, and
Roy
,
G. K.
,
1985
, “
Prediction of Minimum Fluidization Velocity for Gas-Solid Fluidization of Regular Particles in Conical Vessels
,”
Chem. Eng. J.
,
30
(
1
), pp.
57
62
.10.1016/0300-9467(85)80007-1
21.
Kaewklum
,
R.
, and
Kuprianov
,
V. I.
,
2008
, “
Theoretical and Experimental Study on Hydrodynamic Characteristics of Fluidization in Air–Sand Conical Beds
,”
Chem. Eng. Sci.
,
63
(
6
), pp.
1471
1479
.10.1016/j.ces.2007.11.033
22.
Peng
,
Y.
, and
Fan
,
L. T.
,
1997
, “
Hydrodynamic Characteristics of Fluidization in Liquid-Solid Tapered Beds
,”
Chem. Eng. Sci.
,
52
(
14
), pp.
2277
2290
.10.1016/S0009-2509(97)00061-4
23.
Sahoo
,
L. K.
, and
Sarkar
,
S.
,
2021
, “
Experimental Study of Bubble Behavior in a Two-Dimensional Gas–Solid Tapered Fluidized Bed
,”
Ind. Eng. Chem. Res.
,
60
(
34
), pp.
12740
12751
.10.1021/acs.iecr.1c01496
24.
Rasteh
,
M.
,
Ahmadi
,
G.
, and
Hosseini
,
S. H.
,
2022
, “
Effect of Gaussian Size Distribution Width on Minimum Fluidization Velocity in Tapered Gas–Solid Fluidized Beds
,”
Particuology
,
66
, pp.
71
84
.10.1016/j.partic.2021.09.005
25.
Padhi
,
R. K.
,
Dora
,
D. T. K.
,
Mohanty
,
Y. K.
,
Roy
,
G. K.
, and
Sarangi
,
B.
,
2019
, “
Effect of Tapered Angle on Hydrodynamics of Homogenous Ternary Mixture of Regular Particles in a Three-Phase Tapered Fluidized Bed
,”
Indian Chem. Engineer
,
61
(
3
), pp.
269
285
.10.1080/00194506.2018.1548950
26.
Abdelmotalib
,
H. M.
,
Youssef
,
M. A. M.
,
Hassan
,
A. A.
,
Youn
,
S. B.
, and
Im
,
I.
,
2016
, “
Influence of the Specularity Coefficient on Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
169
176
.10.1016/j.icheatmasstransfer.2016.04.018
27.
Abdelmotalib
,
H. M.
, and
Im
,
I.-T.
,
2017
, “
Three Dimensional Modeling of Heat Transfer and Bed Flow in a Conical Fluidized Bed Reactor
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1335
1344
.10.1016/j.ijheatmasstransfer.2016.10.117
28.
Das
,
H. J.
,
Mahanta
,
P.
, and
Saikia
,
R.
,
2020
, “
Characterization of Sand Particles in a Bubbling Fluidized Bed With Diverging Riser
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104953
.10.1016/j.icheatmasstransfer.2020.104953
29.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
(
1
), pp.
223
256
.10.1017/S0022112084000586
30.
Gao
,
X.
,
Li
,
T.
,
Rogers
,
W. A.
,
Smith
,
K.
,
Gaston
,
K.
,
Wiggins
,
G.
, and
Parks
,
J. E.
,
2020
, “
Validation and Application of a Multiphase CFD Model for Hydrodynamics, Temperature Field and RTD Simulation in a Pilot-Scale Biomass Pyrolysis Vapor Phase Upgrading Reactor
,”
Chem. Eng. J.
,
388
, p.
124279
.10.1016/j.cej.2020.124279
31.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1988
, “
Simulation of Granular Layer Inversion in Liquid Fluidized Beds
,”
Int. J. Multiphase Flow
,
14
(
4
), pp.
473
481
.10.1016/0301-9322(88)90023-7
32.
Ma
,
D.
, and
Ahmadi
,
G.
,
1986
, “
An Equation of State for Dense Rigid Sphere Gases
,”
J. Chem. Phys.
,
84
(
6
), pp.
3449
3450
.10.1063/1.450229
33.
Chalermsinsuwan
,
B.
,
Gidaspow
,
D.
, and
Piumsomboon
,
P.
,
2011
, “
Two- and Three-Dimensional CFD Modeling of Geldart A Particles in a Thin Bubbling Fluidized Bed: Comparison of Turbulence and Dispersion Coefficients
,”
Chem. Eng. J.
,
171
(
1
), pp.
301
313
.10.1016/j.cej.2011.04.007
34.
Gidaspaw
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
San Diego
.
35.
Schaeffer
,
D. G.
,
1987
, “
Instability in the Evolution Equations Describing Incompressible Granular Flow
,”
J. Differential Eq.
,
66
(
1
), pp.
19
50
.10.1016/0022-0396(87)90038-6
36.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
(
1
), pp.
67
93
.10.1017/S0022112087000570
37.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer.
,
21
(
4
), pp.
467
476
.10.1016/0017-9310(78)90080-7
You do not currently have access to this content.