Abstract

A steady-state Monte Carlo scheme is developed for phonon transport based on the energy-based deviational phonon Boltzmann transport equation (PBTE). Other than tracking trajectories and time evolution of each packet in the transient methods, this steady-state method determines the paths of energy packets from being emitted to the steady-state through statistics of scattering probability. By reconsidering and developing the periodic heat flux boundary condition, we extend the capability of this method to systems with arbitrary temperature differences. This steady-state energy-based Monte Carlo (SEMC) method has been verified by comparing predictions with results from the previous discrete-ordinates method, the analytical solution, and transient MC methods for phonon transport in or across thin films. The present SEMC algorithm significantly improves the computational efficiency for a steady phonon transport process instead of time evolution by a transient algorithm.

References

1.
Aksamija
,
Z.
,
2017
,
Nanophononics: Thermal Generation, Transport, and Conversion at the Nanoscale
,
CRC Press
,
Singapore
.
2.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
(
2
), pp.
105
114
.10.1038/nmat2090
3.
Wu
,
C.-W.
, and
Wu
,
Y.-R.
,
2016
, “
Optimization of Thermoelectric Properties for Rough Nano-Ridge GaAs/AlAs Superlattice Structure
,”
AIP Adv.
,
6
(
11
), p.
115201
.10.1063/1.4967202
4.
Romano
,
G.
,
Kolpak
,
A. M.
,
Carrete
,
J.
, and
Broido
,
D.
,
2019
, “
Parameter-Free Model to Estimate Thermal Conductivity in Nanostructured Materials
,”
Phys. Rev. B
,
100
(
4
), p.
045310
.10.1103/PhysRevB.100.045310
5.
Monachon
,
C.
,
Weber
,
L.
, and
Dames
,
C.
,
2016
, “
Thermal Boundary Conductance: A Materials Science Perspective
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
433
463
.10.1146/annurev-matsci-070115-031719
6.
Hegedus
,
P. J.
, and
Abramson
,
A. R.
,
2006
, “
A Molecular Dynamics Study of Interfacial Thermal Transport in Heterogeneous Systems
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4921
4931
.10.1016/j.ijheatmasstransfer.2006.05.030
7.
Sun
,
L.
, and
Murthy
,
J. Y.
,
2010
, “
Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
10
), p.
102403
.10.1115/1.4001912
8.
Abramson
,
A. R.
,
Tien
,
C.-L.
, and
Majumdar
,
A.
,
2002
, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
5
), pp.
963
970
.10.1115/1.1495516
9.
Guddati
,
M. N.
, and
Thirunavukkarasu
,
S.
,
2009
, “
Phonon Absorbing Boundary Conditions for Molecular Dynamics
,”
J. Comput. Phys.
,
228
(
21
), pp.
8112
8134
.10.1016/j.jcp.2009.07.033
10.
Zhao
,
H.
, and
Freund
,
J. B.
,
2009
, “
Phonon Scattering at a Rough Interface Between Two Fcc Lattices
,”
J. Appl. Phys.
,
105
(
1
), p.
013515
.10.1063/1.3054383
11.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
4
), pp.
483
491
.10.1115/1.2709656
12.
Wang
,
J.
,
Li
,
L.
, and
Wang
,
J.-S.
,
2011
, “
Tuning Thermal Transport in Nanotubes With Topological Defects
,”
Appl. Phys. Lett.
,
99
(
9
), p.
091905
.10.1063/1.3631725
13.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
14.
Ali
,
H.
, and
Yilbas
,
B. S.
,
2015
, “
Phonon Transport in Silicon-Diamond Thin Film Pairs: Consideration of Thermal Boundary Resistance Due to Cutoff Mismatch and Diffusive Mismatch Models
,”
Numer. Heat Transfer, Part A: Appl.
,
68
(
12
), pp.
1307
1330
.10.1080/10407782.2015.1023138
15.
Ran
,
X.
,
Guo
,
Y.
, and
Wang
,
M.
,
2018
, “
Interfacial Phonon Transport With Frequency-Dependent Transmissivity by Monte Carlo Simulation
,”
Int. J. Heat Mass Transfer
,
123
, pp.
616
628
.10.1016/j.ijheatmasstransfer.2018.02.117
16.
Ran
,
X.
, and
Wang
,
M.
,
2019
, “
Efficiency Improvement of Discrete-Ordinates Method for Interfacial Phonon Transport by Gauss-Legendre Integral for Frequency Domain
,”
J. Comput. Phys.
,
399
, p.
108920
.10.1016/j.jcp.2019.108920
17.
Zhang
,
C.
,
Chen
,
S.
,
Guo
,
Z.
, and
Wu
,
L.
,
2021
, “
A Fast Synthetic Iterative Scheme for the Stationary Phonon Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
174
, p.
121308
.10.1016/j.ijheatmasstransfer.2021.121308
18.
Loy
,
J. M.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2015
, “
A Coupled Ordinates Method for Convergence Acceleration of the Phonon Boltzmann Transport Equation
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
1
), p.
012402
.10.1115/1.4028806
19.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2021
, “
Physics-Informed Neural Networks for Solving Multiscale Mode-Resolved Phonon Boltzmann Transport Equation
,”
Mater. Today Phys.
,
19
, p.
100429
.10.1016/j.mtphys.2021.100429
20.
Guo
,
Y.
, and
Wang
,
M.
,
2016
, “
Lattice Boltzmann Modeling of Phonon Transport
,”
J. Comput. Phys.
,
315
, pp.
1
15
.10.1016/j.jcp.2016.03.041
21.
Hammer
,
R.
,
Fritz
,
V.
, and
Bedoya-Martínez
,
N.
,
2021
, “
The worm-LBM, an Algorithm for a High Number of Propagation Directions on a Lattice Boltzmann Grid: The Case of Phonon Transport
,”
Int. J. Heat Mass Transfer
,
170
, p.
121030
.10.1016/j.ijheatmasstransfer.2021.121030
22.
Guo
,
Y.
, and
Wang
,
M.
,
2022
, “
Lattice Boltzmann Scheme for Hydrodynamic Equation of Phonon Transport
,”
Int. J. Therm. Sci.
,
171
, p.
107178
.10.1016/j.ijthermalsci.2021.107178
23.
Nabovati
,
A.
,
Sellan
,
D. P.
, and
Amon
,
C. H.
,
2011
, “
On the Lattice Boltzmann Method for Phonon Transport
,”
J. Comput. Phys.
,
230
(
15
), pp.
5864
5876
.10.1016/j.jcp.2011.03.061
24.
Zhang
,
C.
,
Guo
,
Z.
, and
Chen
,
S.
,
2019
, “
An Implicit Kinetic Scheme for Multiscale Heat Transfer Problem Accounting for Phonon Dispersion and Polarization
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1366
1376
.10.1016/j.ijheatmasstransfer.2018.10.141
25.
Hua
,
C.
, and
Minnich
,
A. J.
,
2014
, “
Importance of Frequency-Dependent Grain Boundary Scattering in Nanocrystalline Silicon and Silicon–Germanium Thermoelectrics
,”
Semicond. Sci. Technol.
,
29
(
12
), p.
124004
.10.1088/0268-1242/29/12/124004
26.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
749
759
.10.1115/1.1377018
27.
Péraud
,
J.-P. M.
,
Landon
,
C. D.
, and
Hadjiconstantinou
,
N. G.
,
2014
, “
Monte Carlo Methods for Solving the Boltzmann Transport Equation
,”
Annu. Rev. Heat Transfer
,
17
(
N/A
), pp.
205
265
.10.1615/AnnualRevHeatTransfer.2014007381
28.
Péraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.10.1103/PhysRevB.84.205331
29.
Péraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2012
, “
An Alternative Approach to Efficient Simulation of Micro/Nanoscale Phonon Transport
,”
Appl. Phys. Lett.
,
101
(
15
), p.
153114
.10.1063/1.4757607
30.
Pathak
,
A.
,
Pawnday
,
A.
,
Roy
,
A. P.
,
Aref
,
A. J.
,
Dargush
,
G. F.
, and
Bansal
,
D.
,
2021
, “
MCBTE: A Variance-Reduced Monte Carlo Solution of the Linearized Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
265
, p.
108003
.10.1016/j.cpc.2021.108003
31.
Peterson
,
R.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
4
), pp.
815
822
.10.1115/1.2911452
32.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2008
, “
Monte Carlo Simulation of Steady-State Microscale Phonon Heat Transport
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), p.
072404
.10.1115/1.2897925
33.
Yu
,
J.
,
Ye
,
W.
,
Huang
,
B.
,
Villaroman
,
D. J.
, and
Wang
,
Q.
,
2019
, “
MFP-Based Monte Carlo Method for Nanostructure Phonon Transport
,”
ASME
Paper No. MNHMT2019-4136.10.1115/MNHMT2019-4136
34.
Ran
,
X.
, and
Wang
,
M.
,
2021
, “
In-Plane Interfacial Phonon Transport Through Multi-Layer Thin Films by Theoretical Analyses and Monte Carlo Simulations
,”
Int. J. Heat Mass Transfer
,
176
, p.
121438
.10.1016/j.ijheatmasstransfer.2021.121438
35.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
36.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
New York
.
37.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Smoyer
,
J. L.
,
Bauer
,
M. L.
,
English
,
T. S.
,
Saltonstall
,
C. B.
, and
Norris
,
P. M.
,
2010
, “
On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport
,”
Nanoscale Microscale Thermophysical Eng.
,
14
(
1
), pp.
21
33
.10.1080/15567260903530379
38.
Hua
,
C.
,
Chen
,
X.
,
Ravichandran
,
N. K.
, and
Minnich
,
A. J.
,
2017
, “
Experimental Metrology to Obtain Thermal Phonon Transmission Coefficients at Solid Interfaces
,”
Phys. Rev. B
,
95
(
20
), p.
205423
.10.1103/PhysRevB.95.205423
39.
Li
,
X.
, and
Yang
,
R.
,
2012
, “
Effect of Lattice Mismatch on Phonon Transmission and Interface Thermal Conductance Across Dissimilar Material Interfaces
,”
Phys. Rev. B
,
86
(
5
), p.
054305
.10.1103/PhysRevB.86.054305
40.
Hao
,
Q.
,
Chen
,
G.
, and
Jeng
,
M.-S.
,
2009
, “
Frequency-Dependent Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous Silicon With Aligned Pores
,”
J. Appl. Phys.
,
106
(
11
), p.
114321
.10.1063/1.3266169
41.
Ma
,
D.
,
Arora
,
A.
,
Deng
,
S.
,
Xie
,
G.
,
Shiomi
,
J.
, and
Yang
,
N.
,
2019
, “
Quantifying Phonon Particle and Wave Transport in Silicon Nanophononic Metamaterial With Cross Junction
,”
Mater. Today Phys.
,
8
, pp.
56
61
.10.1016/j.mtphys.2019.01.002
42.
Hu
,
Y.
,
Feng
,
T.
,
Gu
,
X.
,
Fan
,
Z.
,
Wang
,
X.
,
Lundstrom
,
M.
,
Shrestha
,
S. S.
, and
Bao
,
H.
,
2020
, “
Unification of Nonequilibrium Molecular Dynamics and the Mode-Resolved Phonon Boltzmann Equation for Thermal Transport Simulations
,”
Phys. Rev. B
,
101
(
15
), p.
155308
.10.1103/PhysRevB.101.155308
43.
Asen-Palmer
,
M.
,
Bartkowski
,
K.
,
Gmelin
,
E.
,
Cardona
,
M.
,
Zhernov
,
A.
,
Inyushkin
,
A.
,
Taldenkov
,
A.
,
Ozhogin
,
V.
,
Itoh
,
K. M.
, and
Haller
,
E.
,
1997
, “
Thermal Conductivity of Germanium Crystals With Different Isotopic Compositions
,”
Phys. Rev. B
,
56
(
15
), pp.
9431
9447
.10.1103/PhysRevB.56.9431
44.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
45.
Mingo
,
N.
,
Yang
,
L.
,
Li
,
D.
, and
Majumdar
,
A.
,
2003
, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
,
3
(
12
), pp.
1713
1716
.10.1021/nl034721i
46.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), pp.
279
421
.10.1063/1.3253100
47.
Zheng
,
Z.
,
Wang
,
M.
,
Li
,
H.
,
Mei
,
Q.
, and
Deng
,
L.
,
2018
, “
Application of a 3D Discrete Ordinates-Monte Carlo Coupling Method to Deep-Penetration Shielding Calculation
,”
Nucl. Eng. Des.
,
326
, pp.
87
96
.10.1016/j.nucengdes.2017.11.005
You do not currently have access to this content.