Abstract

Dropwise condensation (DWC) has the potential to enhance heat transfer compared to filmwise condensation (FWC). The heat transfer rates achieved by DWC depend on the drop size distribution, which is influenced by nucleation processes of newly formed drops. In DWC modeling, the nucleation site density Ns is used as an input parameter to obtain the drop size distribution of small drops. However, due to the small scale of the condensate nuclei, direct observation is difficult, and experimental data on the nucleation site density are scarce. In the literature, values in the range of 109 m−2 to 1015 m−2 can be found for Ns. In this paper, we report DWC experiments on SiO2 and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) thin hydrophobic coatings that show significantly different nucleation site densities. Nucleation site densities are estimated from high-speed imaging of small drops during initial condensation and from model calibration using established DWC theory. We have found the values for Ns to be in the range from 1.1×1010m2 to 5.1×1011m2 for the SiO2 coating and 1011m2 to 1013m2 for the PFDTES coating. Our results show that there can be large differences in the nucleation site density under similar conditions depending on the surface properties. This underlines the importance of investigating nucleation site density specifically for each surface and under consideration of the specific process conditions used for DWC.

References

1.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
,
1930
, “
Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform
,”
Tech. Mech. Thermodyn.
,
1
(
2
), pp.
53
63
.10.1007/BF02641051
2.
Rose
,
J. W.
,
2020
, “
Dropwise Condensation 2019 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
4
), p.
043101
.10.1115/1.4046294
3.
Rose
,
J. W.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
4.
Sablowski
,
J.
,
Unz
,
S.
, and
Beckmann
,
M.
,
2017
, “
Dropwise Condensation on Advanced Functional Surfaces—Theory and Experimental Setup
,”
Chem. Eng. Technol.
,
40
(
11
), pp.
1966
1974
.10.1002/ceat.201700160
5.
Ahlers
,
M.
,
Buck-Emden
,
A.
, and
Bart
,
H.-J.
,
2019
, “
Is Dropwise Condensation Feasible? A Review on Surface Modifications for Continuous Dropwise Condensation and a Profitability Analysis
,”
J. Adv. Res.
,
16
, pp.
1
13
.10.1016/j.jare.2018.11.004
6.
Singh
,
M.
,
Pawar
,
N. D.
,
Kondaraju
,
S.
, and
Bahga
,
S. S.
,
2019
, “
Modeling and Simulation of Dropwise Condensation: A Review
,”
J. Indian Inst. Sci.
,
99
(
1
), pp.
157
171
.10.1007/s41745-019-0106-8
7.
Ma
,
J.
,
Sett
,
S.
,
Cha
,
H.
,
Yan
,
X.
, and
Miljkovic
,
N.
,
2020
, “
Recent Developments, Challenges, and Pathways to Stable Dropwise Condensation: A Perspective
,”
Appl. Phys. Lett.
,
116
(
26
), p.
260501
.10.1063/5.0011642
8.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Proceedings of the Third International Heat Transfer Conference
, Chicago, IL, Aug. 7–12, American Institute of Chemical Engineers, pp.
362
375
.
9.
El Fil
,
B.
,
Kini
,
G.
, and
Garimella
,
S.
,
2020
, “
A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications
,”
Int. J. Heat Mass Transfer
,
160
, p.
120172
.10.1016/j.ijheatmasstransfer.2020.120172
10.
Wang
,
J.
,
Ma
,
Z.
,
Li
,
G.
,
Sundén
,
B.
, and
Yan
,
J.
,
2020
, “
Improved Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
155
, p.
119719
.10.1016/j.ijheatmasstransfer.2020.119719
11.
Wen
,
H. W.
, and
Jer
,
R. M.
,
1976
, “
On the Heat Transfer in Dropwise Condensation
,”
Chem. Eng. J.
,
12
(
3
), pp.
225
231
.10.1016/0300-9467(76)87016-5
12.
Cha
,
H.
,
Vahabi
,
H.
,
Wu
,
A.
,
Chavan
,
S.
,
Kim
,
M.-K.
,
Sett
,
S.
,
Bosch
,
S. A.
,
Wang
,
W.
,
Kota
,
A. K.
, and
Miljkovic
,
N.
,
2020
, “
Dropwise Condensation on Solid Hydrophilic Surfaces
,”
Sci. Adv.
,
6
(
2
), p.
eaax0746
.10.1126/sciadv.aax0746
13.
Ho
,
J. Y.
,
Rabbi
,
K. F.
,
Sett
,
S.
,
Wong
,
T. N.
, and
Miljkovic
,
N.
,
2021
, “
Dropwise Condensation of Low Surface Tension Fluids on Lubricant-Infused Surfaces: Droplet Size Distribution and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
172
, p.
121149
.10.1016/j.ijheatmasstransfer.2021.121149
14.
Maeda
,
Y.
,
Lv
,
F.
,
Zhang
,
P.
,
Takata
,
Y.
, and
Orejon
,
D.
,
2020
, “
Condensate Droplet Size Distribution and Heat Transfer on Hierarchical Slippery Lubricant Infused Porous Surfaces
,”
Appl. Therm. Eng.
,
176
, p.
115386
.10.1016/j.applthermaleng.2020.115386
15.
Enright
,
R.
,
Miljkovic
,
N.
,
Dou
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
9
), p.
091304
.10.1115/1.4024424
16.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.10.1021/la061901+
17.
Tammann
,
G.
, and
Boehme
,
W.
,
1935
, “
Die Zahl Der Wassertröpfchen Bei Der Kondensation Auf Verschiedenen Festen Stoffen
,”
Ann. Phys.
,
414
(
1
), pp.
77
80
.10.1002/andp.19354140108
18.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
8
), p.
081502
.10.1115/1.4003742
19.
Weisensee
,
P. B.
,
Wang
,
Y.
,
Hongliang
,
Q.
,
Schultz
,
D.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Condensate Droplet Size Distribution on Lubricant-Infused Surfaces
,”
Int. J. Heat Mass Transfer
,
109
, pp.
187
199
.10.1016/j.ijheatmasstransfer.2017.01.119
20.
Abu-Orabi
,
M.
,
1998
, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
81
87
.10.1016/S0017-9310(97)00094-X
21.
Parin
,
R.
,
Tancon
,
M.
,
Mirafiori
,
M.
,
Bortolin
,
S.
,
Moro
,
L.
,
Zago
,
L.
,
Carraro
,
F.
,
Martucci
,
A.
, and
Del Col
,
D.
,
2020
, “
Heat Transfer and Droplet Population During Dropwise Condensation on Durable Coatings
,”
Appl. Therm. Eng.
,
179
, p.
115718
.10.1016/j.applthermaleng.2020.115718
22.
Graham
,
C.
, and
Griffith
,
P.
,
1973
, “
Drop Size Distributions and Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
337
346
.10.1016/0017-9310(73)90062-8
23.
Qi
,
B.
,
Wei
,
J.
,
Zhang
,
L.
, and
Xu
,
H.
,
2015
, “
A Fractal Dropwise Condensation Heat Transfer Model Including the Effects of Contact Angle and Drop Size Distribution
,”
Int. J. Heat Mass Transfer
,
83
, pp.
259
272
.10.1016/j.ijheatmasstransfer.2014.11.083
24.
Rose
,
J. W.
,
1976
, “
Further Aspects of Dropwise Condensation Theory
,”
Int. J. Heat Mass Transfer
,
19
(
12
), pp.
1363
1370
.10.1016/0017-9310(76)90064-8
25.
Graham
,
C.
,
1969
, “
The Limiting Heat Transfer Mechanisms of Dropwise Condensation
,” Ph.D. dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
26.
Tanasawa
,
I.
, and
Ochiai
,
J.
,
1973
, “
Experimental Study on Dropwise Condensation
,”
Bull. JSME
,
16
(
98
), pp.
1184
1197
.10.1299/jsme1958.16.1184
27.
Mirafiori
,
M.
,
Parin
,
R.
,
Bortolin
,
S.
, and
Col
,
D. D.
,
2020
, “
Experimental Analysis of Drop-Size Density Distribution During Dropwise Condensation of Steam
,”
J. Phys.: Conf. Ser.
,
1599
(
1
), p.
012011
.10.1088/1742-6596/1599/1/012011
28.
Zhang
,
L.
,
Iwata
,
R.
,
Zhao
,
L.
,
Gong
,
S.
,
Lu
,
Z.
,
Xu
,
Z.
,
Zhong
,
Y.
,
2020
, “
Nucleation Site Distribution Probed by Phase-Enhanced Environmental Scanning Electron Microscopy
,”
Cell Rep. Phys. Sci.
,
1
(
12
), p.
100262
.10.1016/j.xcrp.2020.100262
29.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Modeling and Optimization of Superhydrophobic Condensation
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
11
), p.
111004
.10.1115/1.4024597
30.
Nečas
,
D.
, and
Klapetek
,
P.
,
2012
, “
Gwyddion: An Open-Source Software for SPM Data Analysis
,”
Open Phys.
,
10
(
1
), pp.
181
188
.10.2478/s11534-011-0096-2
31.
Sablowski
,
J.
,
Schwurack
,
R.
,
Hegeholz
,
G.
,
Unz
,
S.
, and
Beckmann
,
M.
,
2020
, “
Wärmeübergang bei Tropfenkondensation: messtechnische Aspekte der Bewertung funktionalisierter Oberflächen
,” Jahrestreffen der ProcessNet-Fachgruppe Wärme- und Stoffübertragung, Erfurt, Germany, Mar. 12–13, Paper No. 25007.
32.
Tanner
,
D. W.
,
Potter
,
C. J.
,
Pope
,
D.
, and
West
,
D.
,
1965
, “
Heat Transfer in Dropwise Condensation—Part I: The Effects of Heat Flux, Steam Velocity and Non-Condensable Gas Concentration
,”
Int. J. Heat Mass Transfer
,
8
(
3
), pp.
419
426
.10.1016/0017-9310(65)90005-0
33.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
34.
Bhushan
,
B.
,
Hansford
,
D.
, and
Lee
,
K. K.
,
2006
, “
Surface Modification of Silicon and Polydimethylsiloxane Surfaces With Vapor-Phase-Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices
,”
J. Vac. Sci. Technol., A
,
24
(
4
), pp.
1197
1202
.10.1116/1.2167077
35.
Fathipour
,
S.
,
Almeida
,
S. F.
,
Ye
,
Z. A.
,
Saha
,
B.
,
Niroui
,
F.
,
King Liu
,
T.-J.
, and
Wu
,
J.
,
2019
, “
Reducing Adhesion Energy of Nano-Electro-Mechanical Relay Contacts by Self-Assembled Perfluoro (2,3-Dimethylbutan-2-Ol) Coating
,”
AIP Adv.
,
9
(
5
), p.
055329
.10.1063/1.5095760
36.
Haynes
,
W. M.
,
Lide
,
D. R.
, and
Bruno
,
T. J.
,
2017
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL/London/New York
.
37.
Sablowski
,
J.
,
2021
, “
DWCmod: Version 1.3.1
,” Zenodo, accessed Dec. 6, 10.5281/zenodo.4568795
38.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
39.
Boggs
,
P. T.
, and
Rogers
,
J. E.
,
1989
, “Orthogonal Distance Regression,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 89–4197.
40.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
41.
Sablowski
,
J.
,
Unz
,
S.
, and
Beckmann
,
M.
,
2021
, “
Global Sensitivity Analysis of a Pure Steam Dropwise Condensation Heat Transfer Model
,”
J. Phys.: Conf. Ser.
,
2116
(
1
), p.
012012
.10.1088/1742-6596/2116/1/012012
You do not currently have access to this content.