Abstract

This work presents a 2D numerical simulation of the nonpremixed combustion of natural gas in an axisymmetric cylindrical chamber, focusing on the effect of adding acoustical excitation to inlet fuel velocity on temperature, exhaust pollutants, and combustion products velocity. Pulsation combustion generates vortices and enhances mixing, which in turn increases combustion efficiency and reduces emissions so it is used in many industrial applications like dryers and boilers. The turbulence is solved using detached eddy simulation model, which is a hybrid modeling between large eddy simulation and realizable k–e model. The chemical reactions are described by the eddy dissipation model. The radiative intensity transport equations are solved using P-1 radiation model. The numerical model achieved a great agreement with experimental data on temperature and species mass fraction. The main outcome of the work is the demonstration of a significant decrease in a volume of pulsed flame compared to a nonpulsed flame with 18% reduction in the flame length. Increasing the Strouhal number enhances the temperature homogenization along the combustion chamber and the flame does not concentrate in the chamber core and toward the chamber exhaust. Changing the fuel velocity from the stoichiometric ratio due to the fuel pulsation cools the chamber and reduces the average temperature from 2000 to 1750 K. There was a reduction in the mass fraction of carbon monoxide, nitrogen monoxide and soot by 50, 28, and 285%, respectively. Increasing fuel frequency increases maximum velocity by 66% axially and 14% radially.

References

1.
Bendu
,
H.
, and
Murugan
,
S.
,
2014
, “
Homogeneous Charge Compression Ignition (HCCI) Combustion: Mixture Preparation and Control Strategies in Diesel Engines
,”
J. Renewable Sustainable Energy Rev.
,
38
, pp.
732
746
.10.1016/j.rser.2014.07.019
2.
Litke
,
P. J.
,
Paxson
,
D. E.
,
Bradley
,
R. P.
, and
Hoke
,
J. L.
,
2005
, “
Assessment of the Performance of a Pulsejet and Comparison With a Pulsed-Detonation Engine
,”
AIAA
Paper No. 2005-228.10.2514/6.2005-228
3.
Scotti
,
A.
, and
Piomelli
,
U.
,
2002
, “
Turbulence Models in Pulsating Flows
,”
AIAA J.
,
40
(
3
), pp.
537
544
.10.2514/2.1679
4.
Blosset
, L.,
1985
, “
Robert Esnault-Pelterie: Space Pioneer
,”
J. First Steps toward Space
.
5.
O'Brien
and John, G.,
1974
, “The Pulsejet Engine-A Review of Its Development Potential”.
6.
Sayres and John
,
2010
, “Computational Fluid Dynamics for Pulsejets and Pulsejet Related Technologies”.
7.
Rayleigh
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
J. R. Inst. Proc.
,
8
, pp.
536
542 NII Article ID (NAID):10029867839
.
8.
Putnam
,
A. A.
,
Belles
,
F. E.
, and
Kentfield
,
J. A. C.
,
1986
, “
Pulse Combustion
,”
J. Prog. Energy Combust. Sci.
,
12
(
1
), pp.
43
79
.10.1016/0360-1285(86)90013-4
9.
Reynst, François Henri
,
1961
,
Pulsating Combustion: The Collected Works of FH Reynst
,
Pergamom Press
.
10.
Zinn
, B. T.,
1992
, “
Pulse Combustion: Recent Applications and Research Issues
,”
Symp. (Int.) Combust., [Proc.]
, 24(1), pp.
1297
1305
.10.1016/S0082-0784(06)80151-7
11.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
J. Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
12.
Eibeck
,
R. A.
,
Keller
,
J. O.
,
Bramlette
,
T. T.
, and
Sailor
,
D. J.
,
1993
, “
Pulse Combustion: Impinging Jet Heat Transfer Enhancement
,”
J. Combust. Sci. Technol.
,
94
(
1–6
), pp.
147
165
.10.1080/00102209308935308
13.
Moss
,
1992
,
The Effects of Turbulence Length Scale on Heat Transfer
, Ph.D. dissertation,
University of Oxford, Oxford, UK
.
14.
Coelho
,
2007
, “
Numerical Simulation of the Interaction Between Turbulence and Radiation in Reactive Flows
,”
J. Prog. Energy Combust. Sci.
,
33
(
4
), pp.
311
383
.10.1016/j.pecs.2006.11.002
15.
Orloff
,
L.
,
De Ris
,
J.
, and
Delichatsios
,
M.
,
1988
, “
General Correlations of Chemical Species in Turbulent Fires
,”
Symp. (Int.) Combust., [Proc.]
, 21(1), pp.
101
109
.
16.
Sediako
,
2019
,
In Situ Electron Microscopy for Characterization and Development of Clean Energy Nanomaterials
,
University of Toronto
,
Canada
.
17.
Jiang
,
B.
,
Wang
,
P.
,
Ying
,
Y.
,
Luo
,
M.
, and
Liu
,
D.
,
2018
, “
Nanoscale Characteristics and Reactivity of Nascent Soot From n-Heptane/2, 5-Dimethylfuran Inverse Diffusion Flames With/Without Magnetic Fields
,”
J. Energ.
,
11
(
7
), p.
1698
.10.3390/en11071698
18.
Wang
, Hai
2011
, “
Formation of Nascent Soot and Other Condensed-Phase Materials in Flames
,”
J. Proc. Combust. Inst.
,
33
(
1
), pp.
41
67
. 10.1016/j.proci.2010.09.009
19.
El Behery
,
R. E.
,
Mohamad
,
A.
, and
Kamal
,
M.
,
2005
, “
Combustion Enhancement of a Gas Flare Using Acoustical Excitation
,”
Combust. Sci. Technol.
,
177
(
9
), pp.
1627
1659
.10.1080/00102200590956722
20.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions
,”
J. Combust. Flame
,
144
(
1–2
), pp.
205
224
.10.1016/j.combustflame.2005.07.010
21.
Eaton
,
A. M.
,
Smoot
,
L. D.
,
Hill
,
S. C.
, and
Eatough
,
C. N.
,
1999
, “
Components, Formulations, Solutions, Evaluation, and Application of Comprehensive Combustion Models
,”
J. Prog. Energy Combust. Sci.
,
25
(
4
), pp.
387
436
.10.1016/S0360-1285(99)00008-8
22.
Spalding
,
D. B.
,
2013
,
Combustion and Mass Transfer: A Textbook With Multiple-Choice Exercises for Engineering Students
,
Elsevier
.
23.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust., [Proc.]
, 16(1), pp.
719
729
.
24.
Vinnichenko
,
N.
,
2013
,
Turbulence in the Free Atmosphere
,
Springer Science & Business Media, Berlin
.
25.
Magel
,
H.-C.
, and
Schnell
,
1996
,
Modelling of Hydrocarbon and Nitrogen Chemistry in Turbulent Combustor Flows Using Detailed Reaction Mechanisms
,
Citeseer
, 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg.
26.
Magel
,
H.C.
,
1996
, “
Simulation of Detailed Chemistry in a Turbulent Combustor Flow
,”
Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, pp.
67
74
.
27.
Barkley
,
D.
,
Song
,
B.
,
Mukund
,
V.
,
Lemoult
,
G
,
Avila
,
M.
, and
Hof
,
B.
,
2015
, “
The Rise of Fully Turbulent Flow
,”
Rise Fully Turbul. Flow
,
526
(
7574
), pp.
550
553
.
28.
Shih
,
T.-H.
,
1993
,
A Realizable Reynolds Stress Algebraic Equation Model
,
National Aeronautics and Space Administration
, Washington, DC.
29.
Spalart
,
2009
, “
Detached-Eddy Simulation
,”
J. Annu. Rev. Fluid Mech.
,
41
, pp.
181
202
.10.1146/annurev.fluid.010908.165130
30.
Chen
,
S.
,
Xia
,
Z.
,
Pei
,
S.
,
Wang
,
J.
,
Yang
,
Y.
,
Xiao
,
Z.
, and
Shi
,
Y.
,
2012
, “
Reynolds-Stress-Constrained Large-Eddy Simulation of Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
,
703
, pp.
1
28
.10.1017/jfm.2012.150
31.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2007
, “
Investigation of Detached Eddy Simulations in Capturing the Effects of Coriolis Forces and Centrifugal Buoyancy in Ribbed Ducts
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
7
), pp.
778
789
.10.1115/1.2717944
32.
Modest
,
M. F.
, and
Haworth, D. C.
,
2016
,
Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications
,
Springer, Berlin
.
33.
Silva
,
C. V.
,
França
,
F. H. R.
, and
Vielmo
,
H. A.
,
2007
, “
Analysis of the Turbulent, Non-Premixed Combustion of Natural Gas in a Cylindrical Chamber With and Without Thermal Radiation
,”
J. Combust. Sci. Technol.
,
179
(
8
), pp.
1605
1630
.10.1080/00102200701244710
34.
Poitou
,
D.
,
El Hafi
,
M.
, and
Cuenot
,
B.
,
2011
, “
Analysis of Radiation Modeling for Turbulent Combustion: Development of a Methodology to Couple Turbulent Combustion and Radiative Heat Transfer in LES
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), p. 062701.10.1115/1.4003552
35.
Ren
,
T.
, and
Modest
,
M. F.
,
2019
, “
Line-by-Line Random-Number Database for Monte Carlo Simulations of Radiation in Combustion System
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
2
), p.
022701
.10.1115/1.4041803
36.
Karmalita, V.
,
2018
, “
Influence of Turbulent Combustion Noise on the Decrement Estimates of Gas Oscillations
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
104502
.10.1115/1.4040255
37.
Yallina
,
E.
,
Larionov
,
V. M.
, and
Iovleva
, O. V.,
2013
, “
Pulsating Combustion of Gas Fuel in the Combustion Chamber With Closed Resonant Circuit
,”
Proc. J. Phys.
, IOP Publishing, 479(1), p.
012017
.10.1088/1742-6596/479/1/012017/pdf
38.
Magdy
,
M.
,
Kamal
,
M. M.
,
Hamed
,
A. M.
,
Hussin
,
A. E.
, and
Torky
,
W. A.
,
2021
, “
Study the Effect of Air Pulsation on the Flame Characteristics
,”
J. Eur. J. Comput. Mech.
, 29(2–3), pp.
279
302
.10.13052/ejcm2642-2085.29235
39.
Magdy
,
M.
,
Kamal
,
M.
,
Hamed
,
A. M.
,
Hussin
,
A. E.
, and
Aboelsoud
,
W.
,
2021
, “
Numerical and Experimental Study of Inverse Diffusion LPG-Air Flames Pulsation
,”
J. Eur. J. Comput. Mech.
,
30
(
3
), pp.
169
196
.
40.
Geng
,
T.
,
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2010
, “
Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet
,”
J. Flow Turbul. Combust.
,
84
(
4
), pp.
653
667
.10.1007/s10494-010-9247-6
41.
Avinash, T., and Reddy
, B.,
2016
, “
Design and CFD Analysis of Pulse Jet Propulsion Engine
,”
J Int. J. Prof. Eng. Stud.
,
7
.
42.
Rafi
, Shaik, and
Kumar
,
2016
, “Design and CFD Analysis of Pulse Jet Engine”.
43.
Evans, R. G., and Alshami
, A. S.,
2009
, “
Pulse Jet Orchard Heater System Development: Part I. Design, Construction, and Optimization
,”
J. Trans. ASABE
,
52
(
2
), pp.
331
343
.10.13031/2013.26817
44.
Geng
,
T.
,
Kiker
,
A.
,
Ordon
,
R.
,
Kuznetsov
,
A. V.
,
Zeng
,
T. F.
, and
Roberts
,
W. L.
,
2007
, “
Combined Numerical and Experimental Investigation of a Hobby-Scale Pulsejet
,”
J. Propul. Power
,
23
(
1
), pp.
186
193
.10.2514/1.18593
45.
Schoen
,
Michael Alexander
,
2005
, “Experimental Investigations in 15 Centimeter Class Pulsejet Engines”.
46.
Debnath
,
2020
, “
Numerical Investigation of Detonation Combustion Wave Propagation in Pulse Detonation Combustor With Nozzle
,”
J. Adv. Aircr. Spacecr. Sci.
,
7
(
3
), pp.
187
202
.10.12989/aas.2020.7.3.187
47.
Hamed
,
A. M.
,
Moustafa
,
A. M.
,
Kamal
,
M. M.
, and
Hussin
,
A. E.
,
2020
, “
Single and Double Flow Pulsations of Normal and Inverse Partially Premixed Methane-Air Flames
,”
Combust. Sci. Technol.
, pp.
1
31
.10.1080/00102202.2020.1854746
48.
Wu
,
H.-W.
,
Wang
,
R.-H.
,
Ou
,
D.-J.
,
Chen
,
Y.-C.
, and
Chen
,
T.-y.
,
2011
, “
Reduction of Smoke and Nitrogen Oxides of a Partial HCCI Engine Using Premixed Gasoline and Ethanol With Air
,”
J. Appl. Energy
,
88
(
11
), pp.
3882
3890
.10.1016/j.apenergy.2011.03.027
49.
GarréTon
., and
D.
,
Simonin
,
1994
, “
Aerodynamics of Steady State Combustion Chambers and Furnaces
,”
Proceedings of ASCF Ercoftac CFD Workshop
, Org: EDF Chatou, France, Oct. 1994, pp.
17
18
.
50.
ANSYS, F. I.
,
2013
, “
Fluent, A.N.S.Y.S Theory Guide 15
,”
ANSYS
, Canonsburg, PA.
51.
Magnussen
,
B.
,
Hjertager
,
B.
,
Olsen
,
J.
, and
Bhaduri
,
D.
,
1979
, “
Effects of Turbulent Structure and Local Concentrations on Soot Formation and Combustion in C2H2 Diffusion Flames
,”
Proceedings of Symposium (International) on Combustion
,
Elsevier
, 17(1), pp.
1383
1393
.
52.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
J. Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
53.
Lai
,
C.-H.
,
Reibenspies
,
J. H.
, and
Darensbourg
,
M. Y.
,
1996
, “
Thiolate Bridged Nickel–Iron Complexes Containing Both Iron (0) and Iron (II) Carbonyls
,”
J. Angew. Chem. Int. Ed. Engl.
,
35
(
20
), pp.
2390
2393
.10.1002/anie.199623901
54.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Arpaci
,
V. S.
,
1992
, “
Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2311
2325
.10.1016/0017-9310(92)90074-3
55.
Guessab
,
A.
,
Baki
,
T.
, and
Bounif
,
A.
,
2011
, “
The Effects Turbulence Intensity on NOx Formation in Turbulent Diffusion Piloted Flame (Sandia Flame D)
,”
Recent Adv. Mech. Eng. Mech.
, pp.
144
150
.
56.
Vermeulen
,
P. J.
, and
Ramesh
,
V.
,
1998
, “
Acoustically Controlled Combustor NOx
,”
ASME vol. 78644, p. V003T06A025.
You do not currently have access to this content.