Abstract

A three-dimensional model of a partially melted powder bed with particles stochastically distributed in size and space coordinates has been developed. Numerical simulation of temperature distributions in stainless steel AISI 316 L and Al-12Si powders in vacuum, air, and argon has been performed to analyze unsteady heat transfer in a porous medium. The numerical model demonstrates a large effect of heat transfer through the gas phase in case of powders with low thermal conductivities like stainless steels. At the porosity level of 65% and above, the mechanism of heat transfer drastically changes and a linear dependence of thermal conductivity on porosity frequently used in literature becomes incorrect. The effects of the consolidation coefficient and size distribution on effective heat transfer in powders are discussed. The obtained dependencies of the effective thermal conductivity on porosity and the consolidation coefficient could be used in additive manufacturing applications.

References

1.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.10.1063/1.4937809
2.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.10.1063/1.4935926
3.
Shishkovskiy
,
I. V.
,
2016
,
Fundamentals of Additive Technologies of High Resolution
,
SpB
,
Saint-Petersburg
.
4.
Hsu
,
C.-T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1994
, “
Modified Zenner-Schlunder Models for Stagnant Thermal Conductivity of Porous Media
,”
J. Porous Media
,
37
(
1
), pp.
19
38
.
5.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
6.
Lykov
,
A.
,
1967
,
Theory of Thermal Conductivity
,
Vysshaya Shkola
,
Moscow, Russia
.
7.
Concept
Laser
GmbH
,
2016
, “Concept Laser. Material Data,”
Hoffman Innovation Group
, Lichtenfels, Germany, accessed Feb. 24,
2022
, https://www.ge.com/additive/sites/default/files/2018-12/CLMAT_20ES_DS_EN_US_2_v1.pdf
8.
Zehnder
,
P.
, and
Schlünder
,
E. U.
,
1970
, “
Thermal Conductivity of Granular Materials at Moderate Temperatures
,”
Chem. Ingr.-Tech.
,
42
, pp.
933
941
.10.1002/cite.330421408
9.
Chen
,
Z. Q.
,
Cheng
,
P.
, and
Hsu
,
C. T.
,
2000
, “
A Theoretical and Experimental Study on Stagnant Thermal Conductivity of bi-Dispersed Porous Media
,”
Int. Commun. Heat Mass Transfer
,
27
(
5
), pp.
601
610
.10.1016/S0735-1933(00)00142-1
10.
Chan
,
C. K.
, and
Tien
,
C. L.
,
1973
, “
Conductance of Packed Spheres in Vacuum
,”
ASME J. Heat Transfer-Trans. ASME
,
95
(
3
), pp.
302
308
.10.1115/1.3450056
11.
Stewart
,
W. E.
,
1973
, “
Determination of Thermal Contact Resistance Using a Pulse Technique
,” Doctoral dissertation, University of Missouri-Rolla, Rolla, MO, p. 98.
12.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2013
,
Standard Terminology for Additive Manufacturing Technologies
, ASTM International, West Conshohocken, PA.
13.
Hadley
,
G. R.
,
1986
, “
Thermal Conductivity of Packed Metal Powders
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
909
920
.10.1016/0017-9310(86)90186-9
14.
Gordeev
,
G.
,
Krivilyov
,
M.
, and
Ankudinov
,
V.
,
2017
, “
Computer Simulation of Selective Laser Melting of Fine-Grained Metallic Powders
,”
Comput. Continuum Mech.
,
10
(
3
), pp.
293
312
.10.7242/1999-6691/2017.10.3.23
15.
Gordeev
,
G. A.
,
Ankudinov
,
V. E.
,
Krivilyov
,
M. D.
, and
Kharanzhevskiy
,
E. V.
,
2012
, “
Optimisation of Processing Parameters in Laser Sintering of Metallic Powders
,”
IOP Conf. Ser.
,
27
, p.
012079
.10.1088/1757-899X/27/1/012079
16.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Solberg
,
J. M.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.10.1007/s00466-014-1024-2
17.
Huang
,
Y.
,
Yang
,
L. J.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2016
, “
Finite Element Analysis of Thermal Behavior of Metal Powder During Selective Laser Melting
,”
Int. J. Therm. Sci.
,
104
, pp.
146
157
.10.1016/j.ijthermalsci.2016.01.007
18.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.10.1016/j.jmatprotec.2008.02.040
19.
Romano
,
J.
,
Ladani
,
L.
, and
Sadowski
,
M.
,
2015
, “
Thermal Modeling of Laser Based Additive Manufacturing Processes Within Common Materials
,”
Procedia Manufacturing
, Vol.
1
,
Elsevier
, Amsterdam, The Netherlands, pp.
238
250
.
20.
Gordeev
,
G. A.
,
Ankudinov
,
V.
,
Kharanzhevskiy
,
E. V.
, and
Krivilyov
,
M. D.
,
2020
, “
Numerical Simulation of Selective Laser Melting With Local Powder Shrinkage Using FEM With the Refined Mesh
,”
Eur. Phys. J. Spec. Top.
,
229
(
2–3
), pp.
205
216
.10.1140/epjst/e2019-900100-6
21.
Tanaka
,
R.
,
Hosokawa
,
A.
,
Ueda
,
T.
,
Furumoto
,
T.
,
Abdul Aziz
,
M. S.
, and
Alkahari
,
M. R.
,
2012
, “
Thermal Conductivity of Metal Powder and Consolidated Material Fabricated Via Selective Laser Melting
,”
Emer. Technol. Precis. Eng. XIV
,
523-524
, pp.
244
249
.10.4028/www.scientific.net/KEM.523-524.244
22.
Holzbecher
,
E.
, and
Oehlmann
,
S.
,
2012
, “
Comparison of Heat and Mass Transport at the Micro-Scale
,”
Proceedings of the COMSOL Conference
, Milan, Italy, Oct. 10, pp.
1
7
.https://www.comsol.com/paper/comparison-of-heat-and-mass-transport-at-the-micro-scale-13067
23.
Wang
,
Y.
,
Liu
,
H.
,
Ling
,
X.
, and
Weng
,
Y.
,
2016
, “
Effects of Pore Microstructure on the Effective Thermal Conductivity of Thermal Barrier Coatings
,”
Appl. Therm. Eng.
,
102
, pp.
234
242
.10.1016/j.applthermaleng.2016.03.174
24.
Yang
,
J.
,
Wu
,
J.
,
Zhou
,
L.
, and
Wang
,
Q.
,
2016
, “
Computational Study of Fluid Flow and Heat Transfer in Composite Packed Beds of Spheres With Low Tube to Particle Diameter Ratio
,”
Nucl. Eng. Des.
,
300
, pp.
85
96
.10.1016/j.nucengdes.2015.10.030
25.
Moser
,
D.
,
Pannala
,
S.
, and
Murthy
,
J.
,
2016
, “
Computation of Effective Thermal Conductivity of Powders for Selective Laser Sintering Simulations
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p. 082002.10.1115/1.4033351
26.
Lee
,
Y. S.
,
Nandwana
,
P.
, and
Zhang
,
W.
,
2018
, “
Dynamic Simulation of Powder Packing Structure for Powder Bed Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
1507
1520
.10.1007/s00170-018-1697-3
27.
Ofuchi
,
K.
, and
Kunii
,
D.
,
1965
, “
Heat-Transfer Characteristics of Packed Beds With Stagnant Fluids
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
749
757
.10.1016/0017-9310(65)90021-9
28.
Kandula
,
M.
,
2011
, “
On the Effective Thermal Conductivity of Porous Packed Beds With Uniform Spherical Particles
,”
J. Porous Media
,
14
(
10
), pp.
919
926
.10.1615/JPorMedia.v14.i10.70
29.
Chen
,
L.
,
Ma
,
X.
,
Cheng
,
X.
,
Jiang
,
K.
,
Huang
,
K.
, and
Liu
,
S.
,
2015
, “
Theoretical Modeling of the Effective Thermal Conductivity of the Binary Pebble Beds for the CFETR-WCCB Blanket
,”
Fusion Eng. Des.
,
101
, pp.
148
153
.10.1016/j.fusengdes.2015.10.023
30.
Yang
,
C.
, and
Nakayama
,
A.
,
2010
, “
A Synthesis of Tortuosity and Dispersion in Effective Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3222
3230
.10.1016/j.ijheatmasstransfer.2010.03.004
31.
Asakuma
,
Y.
,
2012
, “
Effective Thermal Conductivity With Convection and Radiation in Packed Bed
,”
Proceedings of ECOS 2012
, Vol.
1
,
Perugia
,
Italy
, Aabo Akademi University, pp.
291
301
.
32.
Slavin
,
A. J.
,
Arcas
,
V.
,
Greenhalgh
,
C. A.
,
Irvine
,
E. R.
, and
Marshall
,
D. B.
,
2002
, “
Theoretical Model for the Thermal Conductivity of a Packed Bed of Solid Spheroids in the Presence of a Static Gas, With No Adjustable Parameters Except at Low Pressure and Temperature
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4151
4161
.10.1016/S0017-9310(02)00117-5
33.
Gusarov
,
A. V.
, and
Smurov
,
I.
,
2010
, “
Radiation Transfer in Metallic Powder Beds Used in Laser Processing
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
17–18
), pp.
2517
2527
.10.1016/j.jqsrt.2010.07.009
34.
Gusarov
,
A. V.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2009
, “
Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), pp.
1
10
.10.1115/1.3109245
35.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.10.1016/0022-5096(63)90036-X
36.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.10.1016/j.actamat.2016.02.014
37.
Samaey
,
G.
,
2006
, “
Patch Dynamics: Macroscopic Simulation of Multiscale Systems
,” Ph.D. thesis,
Katholieke Universiteit Leuven
, Leuven, Belgium, p. 242..
38.
Virto
,
L.
,
Carbonell
,
M.
,
Castilla
,
R.
, and
Gamez-Montero
,
P. J.
,
2009
, “
Heating of Saturated Porous Media in Practice: Several Causes of Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5412
5422
.10.1016/j.ijheatmasstransfer.2009.07.003
39.
Kabbur
,
N.
,
2017
, “
Design and Manufacturing Guidelines for Additive Manufacturing of High Porosity Cellular Structures
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
40.
Spierings
,
A. B.
,
Herres
,
N.
, and
Levy
,
G.
,
2011
, “
Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts
,”
Rapid Prototyping J.
,
17
(
3
), pp.
195
202
.10.1108/13552541111124770
41.
Choi
,
J.-P.
,
Shin
,
G.-H.
,
Lee
,
H.-S.
,
Yang
,
D.-Y.
,
Yang
,
S.
,
Lee
,
C.-W.
,
Brochu
,
M.
,
Yu
,
J.-H.
,
Lee
,
H.-S.
,
Yang
,
S.
,
Brochu
,
M.
,
Choi
,
J.-P.
,
Lee
,
C.-W.
,
Yang
,
D.-Y.
, and
Shin
,
G.-H.
,
2017
, “
Evaluation of Powder Layer Density for the Selective Laser Melting (SLM) Process
,”
Mater. Trans.
,
58
(
2
), pp.
294
297
.10.2320/matertrans.M2016364
42.
Tang
,
N.-K.
,
Chen
,
J.-K.
, and
Hung
,
H.-Y.
,
2013
, “
The Effect of Silicon on the Thermal Conductivity of Al-Si Alloys
,”
Conference Papers: Materials Science & Technology, Symposium Light Metals for Transportation
, Vol.
1
, Montreal, QC, Canada, Oct. 27-31, pp.
1339
1343
.
43.
Lide
,
D. R.
, ed.,
2008
,
CRC Handbook of Chemistry and Physics
, 84 ed.,
Taylor and Francis Group, CRC Press
,
London, New York
.
44.
Sekulic
,
D.
,
Galenko
,
P.
,
Krivilyov
,
M. D.
,
Walker
,
L.
, and
Gao
,
F.
,
2005
, “
Dendritic Growth in Al-Si Alloys During Brazing. Part 2: Computational Modeling
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2385
2396
.10.1016/j.ijheatmasstransfer.2005.01.036
45.
Nikanorov
,
S. P.
,
Volkov
,
M. P.
,
Gurin
,
V. N.
,
Burenkov
,
Y.
,
Derkachenko
,
L. I.
,
Kardashev
,
B. K.
,
Regel
,
L. L.
, and
Wilcox
,
W. R.
,
2005
, “
Structural and Mechanical Properties of Al-Si Alloys Obtained by Fast Cooling of a Levitated Melt
,”
Mater. Sci. Eng.
,
390
(
1–2
), pp.
63
69
.10.1016/j.msea.2004.07.037
46.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2014
, “
NIST Chemistry webBook
,”
NIST
, Washington, DC, Standard No. 69.
47.
Segerlind
,
L. J.
,
1984
, “
Applied Finite Element Analysis
,” John Wiley and Sons, New York.
48.
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1984
,
Ch. Heat and Mass Transfer in Porous Media in Fundamentals of Transport Phenomena in Porous Media
,
Springer
,
Netherlands
.
49.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2018
, “
Metal 3D-Printed Wick Structures for Heat Pipe Application: Capillary Performance Analysis
,”
Appl. Therm. Eng.
,
143
, pp.
403
414
.10.1016/j.applthermaleng.2018.07.111
50.
Meier
,
C.
,
Penny
,
R. W.
,
Zou
,
Y.
,
Gibbs
,
J. S.
, and
Hart
,
A. J.
,
2017
, “
Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation, and Experimentation
,”
Annu. Rev. Heat Transfer
,
20
(
1
), pp.
241
316
.10.1615/AnnualRevHeatTransfer.2018019042
51.
Nikiforov
,
G. D.
,
1972
,
Metallurgy of the Fusion Welding of Aluminum Alloys
,
Mashinostroenie
,
Moscow, Russia
.
52.
Comsol Ab
,
2008
,
COMSOL Multiphysics, V.3.5, Reference Guide
,
Comsol Ab
,
Stockholm, Sweden
.
53.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1984
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
.
54.
Bird
,
B. R.
,
Warren
,
E. S.
, and
Lightfoot
,
N. E.
,
2007
,
Transport Phenomena
,
Wiley
, New York.
55.
Xu
,
W.
,
Zhu
,
Z.
, and
Zhang
,
D.
,
2018
, “
Continuum Percolation-Based Tortuosity and Thermal Conductivity of Soft Superball Systems: Shape Dependence From Octahedra: Via Spheres to Cubes
,”
Soft Matter
,
14
(
43
), pp.
8684
8691
.10.1039/C8SM01488D
56.
Nozad
,
I.
,
1983
, “
An Experimental and Theoretical Study of Heat Conduction in Two- and Three-Phase Systems
,” Ph.D. thesis,
University of California
,
Davis, CA
.
57.
Nozad
,
I.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1985
, “
Heat Conduction in MultiPhase Systems I: Theory and Experiments for Two-Phase Systems
,”
Chem. Eng. Sci.
,
40
(
5
), pp.
843
855
.10.1016/0009-2509(85)85037-5
58.
Kunii
,
D.
, and
Smith
,
J. M.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
79
.10.1002/aic.690060115
59.
Henriksen
,
J. G.
,
2013
, “
Thermal Conductivity Measurements of Porous Materials
,” Ph.D. thesis,
Norwegian University of Science and Technology, NTNU - Trondheim, Norway
.
60.
Yovanovich
,
M. M.
,
2005
, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
182
206
.10.1109/TCAPT.2005.848483
61.
Anestiev
,
L. A.
, and
Froyen
,
L.
,
1999
, “
Model of the Primary Rearrangement Processes at Liquid Phase Sintering and Selective Laser Sintering Due to Biparticle Interactions
,”
J. Appl. Phys.
,
86
(
7
), pp.
4008
4017
.10.1063/1.371321
62.
Desai
,
P. D.
,
1986
, “
Thermodynamic Properties of Iron and Silicon
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
967
983
.10.1063/1.555761
You do not currently have access to this content.