Abstract

This paper presents the results of a numerical simulation for the natural convection inside an enclosure that has an inner open square at its center. The inner square is open at the top and connected to the ceiling of the enclosure. The open inner square distorts the convection patterns, slows down the flow, and provides a compartment to confine the fluid at the core of the enclosure. Ultimately, this lowers the local Nusselt number, Nu, along the hot wall, and reduces the heat flux through the enclosure. The analysis shows the effects of changing the dimensions of the inner square on the heat flux through the enclosure for a range of Rayleigh numbers- from 103 to 106. Short-sided inner squares work as flow deflectors while long-sided inner squares provide compartments to accommodate new flow circulation at the core of the enclosure. The inner square is most effective when the length of its sides equals the width of the stagnant core inside the empty enclosure at the same Rayleigh number, and the heat flux at this condition is the lowest. Inner squares made of thermally conducting materials can reduce the heat flux through the enclosure by 70%, while adiabatic inner squares can reduce the heat flux by 90%. Inner squares reduce the external heat load on buildings when fitted inside the holes of hollow bricks used in building facades. The external heat flux can be lowered by 30%–55% depending on the material of the inner square and outer side temperature.

References

1.
Hou
,
C.
,
Meng
,
X.
,
Gao
,
Y.
,
Mao
,
W.
, and
Long
,
E.
,
2018
, “
Effect of the Insulation Materials Filling on the Thermal Performance of Sintered Hollow Bricks Under the Air-Conditioning Intermittent Operation
,”
Case Stud. Construct. Mater.
,
8
, pp.
217
225
.10.1016/j.cscm.2018.02.007
2.
Meng
,
X.
,
Luo
,
T.
,
Gao
,
Y.
,
Zhang
,
L.
,
Huang
,
X.
,
Hou
,
C.
,
Shen
,
Q.
, and
Long
,
E.
,
2018
, “
Comparative Analysis on Thermal Performance of Different Wall Insulation Forms Under the Air-Conditioning Intermittent Operation in Summer
,”
Appl. Therm. Eng.
,
130
, pp.
429
438
.10.1016/j.applthermaleng.2017.11.042
3.
Pandey
,
S.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2019
, “
An Exhaustive Review of Studies on Natural Convection in Enclosures With and Without Internal Bodies of Various Shapes
,”
Int. J. Heat Mass Transfer
,
138
, pp.
762
795
.10.1016/j.ijheatmasstransfer.2019.04.097
4.
Hashim
,
A. S.
,
Almensoury
,
M. F.
,
Ali
,
F. H.
,
Hamzah
,
H. K.
, and
Ghalambaz
,
M. G.
,
2020
, “
Multiscale Approach of the Equivalent Thermal Conductivity of Modified Foam-Filled and Non-Filled Hollow Brick and a Brick Wall
,”
J. Therm. Eng.
,
7
(
1
), pp.
190
2031
.10.18186/thermal.847754
5.
Mezrhab
,
A.
,
Bouali
,
H.
,
Amaoui
,
H.
, and
Bouzidi
,
M.
,
2006
, “
Computation of Combined Natural-Convection and Radiation Heat-Transfer in a Cavity Having a Square Body at Its Center
,”
Appl. Energy
,
83
(
9
), pp.
1004
1023
.10.1016/j.apenergy.2005.09.006
6.
Habbachi
,
F.
,
Oueslati
,
F. S.
,
Bennacer
,
R.
, and
Elcafsi
,
A.
,
2018
, “
Optimization of the Heat Transfer Rate of Energy Systems of Conductive Bodies Confined to the Center of a Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
8
), p.
082802
.10.1115/1.4038828
7.
Asan
,
H.
,
2000
, “
Natural Convection in an Annulus Between Two Isothermal Concentric Square Ducts
,”
Int. Commun. Heat Mass Transfer
,
27
(
3
), pp.
367
376
.10.1016/S0735-1933(00)00117-2
8.
Bhave
,
P.
,
Narasimhan
,
A.
, and
Rees
,
D. A. S.
,
2006
, “
Natural Convection Heat Transfer Enhancement Using Adiabatic Block: Optimal Block Size and Prandtl Number Effect
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3807
3818
.10.1016/j.ijheatmasstransfer.2006.04.017
9.
El Mansouri
,
A.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Alouah
,
M.
,
2020
, “
Numerical Analysis of Conjugate Convection-Conduction Heat Transfer in an Air-Filled Cavity With a Rhombus Conducting Block Subjected to Subdivision: Cooperating and Opposing Roles
,”
Int. J. Heat Mass Transfer
,
150
, p.
119375
.10.1016/j.ijheatmasstransfer.2020.119375
10.
Hassanzadeh
,
R.
,
Rahimi
,
R.
,
Khosravipour
,
A.
,
Mostafavi
,
S.
, and
Pekel
,
H.
,
2020
, “
Analysis of Natural Convection in a Square Cavity in the Presence of a Rotating Cylinder With a Specific Number of Roughness Components
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104708
.10.1016/j.icheatmasstransfer.2020.104708
11.
Olayemi
,
O. A.
,
Khaled
,
A. F.
,
Temitope
,
O. J.
,
Victor
,
O. O.
,
Odetunde
,
C. B.
, and
Adegun
,
I. K.
,
2021
, “
Parametric Study of Natural Convection Heat Transfer From an Inclined Rectangular Cylinder Embedded in a Square Enclosure
,”
Aust. J. Mech. Eng.
, epub
. 10.1080/14484846.2021.1913853
12.
Hashim
,
I.
,
Alsabery
,
A. I.
,
Sheremet
,
M. A.
, and
Chamkha
,
A. J.
,
2019
, “
Numerical Investigation of Natural Convection of Al2O3-Water Nanofluid in a Wavy Cavity With Conductive Inner Block Using Buongiorno's Two-Phase Model
,”
Adv. Powder Technol.
,
30
(
2
), pp.
399
414
.10.1016/j.apt.2018.11.017
13.
Öztuna
,
S.
,
2007
, “
A Differential Quadrature Solution of Natural Convection in an Enclosure With a Partial Partition
,”
Numer. Heat Transfer, Part A Appl.
,
52
(
11
), pp.
1009
1026
.10.1080/10407780701364536
14.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Oztop
,
H. F.
,
2011
, “
Heat Transfer Reduction Due to a Ceiling-Mounted Barrier in an Enclosure With Natural Convection
,”
Heat Transfer Eng.
,
32
(
5
), pp.
429
438
.10.1080/01457632.2010.483889
15.
Bilgen
,
E.
,
2005
, “
Natural Convection in Cavities With a Thin Fin on the Hot Wall
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3493
3505
.10.1016/j.ijheatmasstransfer.2005.03.016
16.
Chen
,
H. T.
,
Lin
,
M. C.
, and
Chang
,
J. R.
,
2018
, “
Numerical and Experimental Studies of Natural Convection in a Heated Cavity With a Horizontal Fin on a Hot Sidewall
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1217
1229
.10.1016/j.ijheatmasstransfer.2018.04.046
17.
Elatar
,
A.
,
Teamah
,
M. A.
, and
Hassab
,
M. A.
,
2016
, “
Numerical Study of Laminar Natural Convection Inside Square Enclosure With Single Horizontal Fin
,”
Int. J. Therm. Sci.
,
99
, pp.
41
51
.10.1016/j.ijthermalsci.2015.08.003
18.
Liu
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
,
2014
, “
Natural Convection in a Differentially Heated Cavity With Two Horizontal Adiabatic Fins on the Sidewalls
,”
Int. J. Heat Mass Transfer
,
72
, pp.
23
36
.10.1016/j.ijheatmasstransfer.2013.12.083
19.
Hussain
,
S.
,
Jamal
,
M.
, and
Geridonmez
,
B. P.
,
2021
, “
Impact of Fins and Inclined Magnetic Field in Double Lid-Driven Cavity With Cu–Water Nanofluid
,”
Int. J. Therm. Sci.
,
161
, p.
106707
.10.1016/j.ijthermalsci.2020.106707
20.
Al-Farhany
,
K.
,
Al-Chlaihawi
,
K. K.
,
Al-Dawody
,
M. F.
,
Biswas
,
N.
, and
Chamkha
,
A. J.
,
2021
, “
Effects of Fins on Magnetohydrodynamic Conjugate Natural Convection in a Nanofluid-Saturated Porous Inclined Enclosure
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105413
.10.1016/j.icheatmasstransfer.2021.105413
21.
Bae
,
Y.
,
Kim
,
S. H.
,
Seo
,
J. K.
, and
Kim
,
Y. I.
,
2016
, “
Analytical Modeling of Natural Convection in a Tall Rectangular Enclosure With Multiple Disconnected Partitions
,”
Nucl. Eng. Technol.
,
48
(
4
), pp.
925
931
.10.1016/j.net.2016.02.021
22.
Patil
,
S.
,
Sharma
,
A. K.
, and
Velusamy
,
K.
,
2016
, “
Conjugate Laminar Natural Convection and Surface Radiation in Enclosures: Effects of Protrusion Shape and Position
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
139
146
.10.1016/j.icheatmasstransfer.2016.05.006
23.
Gokulavani
,
P.
,
Muthtamilselvan
,
M.
,
Al-Mdallal
,
Q. M.
, and
Doh
,
D. H.
,
2020
, “
Effects of Orientation of the Centrally Placed Heated Baffle in an Alternative Configured Ventilation Cavity
,”
Eur. Phys. J. Plus
,
135
(
1
), pp. 1–23.10.1140/epjp/s13360-019-00070-7
24.
Mahapatra
,
S. K.
,
Sarkar
,
A.
, and
Sarkar
,
A.
,
2007
, “
Numerical Simulation of Opposing Mixed Convection in Differentially Heated Square Enclosure With Partition
,”
Int. J. Therm. Sci.
,
46
(
10
), pp.
970
979
.10.1016/j.ijthermalsci.2006.11.017
25.
Khatamifar
,
M.
,
Lin
,
W.
,
Armfield
,
S. W.
,
Holmes
,
D.
, and
Kirkpatrick
,
M. P.
,
2017
, “
Conjugate Natural Convection Heat Transfer in a Partitioned Differentially-Heated Square Cavity
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
92
103
.10.1016/j.icheatmasstransfer.2016.12.003
26.
Alhazmy
,
M.
,
2019
, “
Rotated G-Shaped Insertion to Suppress Natural Convection Inside a Square Enclosure That Has Conductive Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
12
), p.
122505
.10.1115/1.4044704
27.
Kadari
,
A.
,
Chemloul
,
N. E. S.
, and
Mekroussi
,
S.
,
2018
, “
Numerical Investigation of Laminar Natural Convection in a Square Cavity With Wavy Wall and Horizontal Fin Attached to the Hot Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
7
), p.
072503
.10.1115/1.4039081
28.
Haghighi
,
A.
, and
Vafai
,
K.
,
2014
, “
Optimal Positioning of Strips for Heat Transfer Reduction Within an Enclosure
,”
Numer. Heat Transfer, Part A Appl.
,
66
(
1
), pp.
17
40
.10.1080/10407782.2013.869081
29.
Anon,
2017
,
ANSYS Fluent User Guide
,
ANSYS
,
Lebanon, NH
.
30.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
31.
Ait-Taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2014
, “
Simulation of Coupled Heat Transfers in a Hollow Tile With Two Vertical and Three Horizontal Uniform Rectangular Cavities Heated From Below or Above
,”
Energy Build.
,
84
, pp.
628
632
.10.1016/j.enbuild.2014.09.010
32.
Saravanan
,
S.
, and
Raja
,
N.
,
2018
, “
Effect of Variable Sidewall Temperatures on the Combined Surface Radiation-Convection in a Discretely Heated Enclosure
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
9
), p.
094503
.10.1115/1.4039912
You do not currently have access to this content.