Abstract

Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONs to customize their unique properties have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this minireview, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs are discussed, together with the nonmagnetic heating effect (i.e., high-intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.

References

1.
Kodama
,
R. H.
,
1999
, “
Magnetic Nanoparticles
,”
J. Magn. Magn. Mater.
,
200
(
1–3
), pp.
359
372
.10.1016/S0304-8853(99)00347-9
2.
Wu
,
W.
,
He
,
Q.
, and
Jiang
,
C.
,
2008
, “
Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies
,”
Nanoscale Res. Lett.
,
3
(
11
), pp.
397
415
.10.1007/s11671-008-9174-9
3.
Kwizera
,
E. A.
,
Chaffin
,
E.
,
Shen
,
X.
,
Chen
,
J.
,
Zou
,
Q.
,
Wu
,
Z.
,
Gai
,
Z.
,
2016
, “
Size- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles
,”
J. Phys. Chem. C
,
120
(
19
), pp.
10530
10546
.10.1021/acs.jpcc.6b00875
4.
Kwizera
,
E. A.
,
Chaffin
,
E.
,
Wang
,
Y.
, and
Huang
,
X.
,
2017
, “
Synthesis and Properties of Magnetic-Optical Core-Shell Nanoparticles
,”
RSC Adv.
,
7
(
28
), pp.
17137
17153
.10.1039/C7RA01224A
5.
Afzalipour
,
R.
,
Khoei
,
S.
,
Khoee
,
S.
,
Shirvalilou
,
S.
,
Raoufi
,
N. J.
,
Motevalian
,
M.
, and
Karimi
,
M. Y.
,
2021
, “
Thermosensitive Magnetic Nanoparticles Exposed to Alternating Magnetic Field and Heat-Mediated Chemotherapy for an Effective Dual Therapy in Rat Glioma Model
,”
Nanomedicine
,
31
, p.
102319
.10.1016/j.nano.2020.102319
6.
Kharat
,
P. B.
,
Somvanshi
,
S. B.
,
Khirade
,
P. P.
, and
Jadhav
,
K. M.
,
2020
, “
Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia Toward Noninvasive Cancer Treatment
,”
ACS Omega
,
5
(
36
), pp.
23378
23384
.10.1021/acsomega.0c03332
7.
Appel
,
C.
,
Kuttich
,
B.
,
Kraus
,
T.
, and
Stuhn
,
B.
,
2021
, “
In Situ Investigation of Temperature Induced Agglomeration in Non-Polar Magnetic Nanoparticle Dispersions by Small Angle X-Ray Scattering
,”
Nanoscale
,
13
(
14
), pp.
6916
6920
.10.1039/D0NR08434D
8.
Gutierrez
,
L.
,
de la Cueva
,
L.
,
Moros
,
M.
,
Mazario
,
E.
,
de Bernardo
,
S.
,
de la Fuente
,
J. M.
,
Morales
,
M. P.
, and
Salas
,
G.
,
2019
, “
Aggregation Effects on the Magnetic Properties of Iron Oxide Colloids
,”
Nanotechnology
,
30
(
11
), p.
112001
.10.1088/1361-6528/aafbff
9.
Kalambur
,
V. S.
,
Longmire
,
E.
, and
Bischof
,
J. C.
,
2007
, “
Characterization of Cell Association and Heat Treatment Using Iron Oxide Magnetic Nanoparticles
,”
ASME
Paper No. SBC2007-176216.10.1115/SBC2007-176216
10.
Frey
,
N. A.
,
Peng
,
S.
,
Cheng
,
K.
, and
Sun
,
S.
,
2009
, “
Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage
,”
Chem. Soc. Rev.
,
38
(
9
), pp.
2532
2542
.10.1039/b815548h
11.
Williams
,
H. M.
,
2017
, “
The Application of Magnetic Nanoparticles in the Treatment and Monitoring of Cancer and Infectious Diseases
,”
Biosci. Horiz.: Int. J. Stud. Res.
,
10
, p.
hzx009
.10.1093/biohorizons/hzx009
12.
Vaishnava
,
P. P.
,
Tackett
,
R.
,
Dixit
,
A.
,
Sudakar
,
C.
,
Naik
,
R.
, and
Lawes
,
G.
,
2007
, “
Magnetic Relaxation and Dissipative Heating in Ferrofluids
,”
J. Appl. Phys.
,
102
(
6
), p.
063914
.10.1063/1.2784080
13.
Dutz
,
S.
, and
Hergt
,
R.
,
2014
, “
Magnetic Particle Hyperthermia—A Promising Tumour Therapy?
,”
Nanotechnology
,
25
(
45
), p.
452001
.10.1088/0957-4484/25/45/452001
14.
Yoo
,
D.
,
Lee
,
J. H.
,
Shin
,
T. H.
, and
Cheon
,
J.
,
2011
, “
Theranostic Magnetic Nanoparticles
,”
Acc. Chem. Res.
,
44
(
10
), pp.
863
874
.10.1021/ar200085c
15.
Hosono
,
T.
,
Takahashi
,
H.
,
Fujita
,
A.
,
Joseyphus
,
R. J.
,
Tohji
,
K.
, and
Jeyadevan
,
B.
,
2009
, “
Synthesis of Magnetite Nanoparticles for AC Magnetic Heating
,”
J. Magn. Magn. Mater.
,
321
(
19
), pp.
3019
3023
.10.1016/j.jmmm.2009.04.061
16.
Wahajuddin
,
M.
, and
Arora
,
S.
,
2012
, “
Superparamagnetic Iron Oxide Nanoparticles: Magnetic Nanoplatforms as Drug Carriers
,”
Int. J. Nanomed.
,
7
, pp.
3445
3471
.10.2147/IJN.S30320
17.
Zipare, K., Dhumal, J., Bandgar, S., Mathe, V., and Shahane
,
G.
,
2015
, “
Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties
,”
J. Nanosci. Nanoeng.
,
1
(
3
), pp.
178
182
.http://files.aiscience.org/journal/article/html/70270032.html
18.
Deb
,
P.
,
Basumallick
,
A.
, and
Das
,
S.
,
2007
, “
Controlled Synthesis of Monodispersed Superparamagnetic Nickel Ferrite Nanoparticles
,”
Solid State Commun.
,
142
(
12
), pp.
702
705
.10.1016/j.ssc.2007.04.032
19.
Tajik
,
S.
,
Beitollahi
,
H.
,
Aflatoonian
,
M. R.
,
Mohtat
,
B.
,
Aflatoonian
,
B.
,
Shoaie
,
I. S.
,
Khalilzadeh
,
M. A.
,
2020
, “
Fabrication of Magnetic Iron Oxide-Supported Copper Oxide Nanoparticles (Fe3O4/CuO): Modified Screen-Printed Electrode for Electrochemical Studies and Detection of Desipramine
,”
RSC Adv.
,
10
(
26
), pp.
15171
15178
.10.1039/D0RA02380A
20.
Abu-Abdeen
,
M.
,
Saber
,
O.
, and
Mousa
,
E.
,
2021
, “
Preparation and Physical Characterization of Cobalt Iron Oxide Magnetic Nanoparticles Loaded Polyvinyl Alcohol
,”
J. Thermoplast. Compos. Mater.
, epub.10.1177/0892705720985577
21.
Etheridge
,
M. L.
,
Xu
,
Y.
,
Rott
,
L.
,
Choi
,
J.
,
Glasmacher
,
B.
, and
Bischof
,
J. C.
,
2014
, “
RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials
,”
Technology
,
02
(
03
), pp.
229
242
.10.1142/S2339547814500204
22.
Schildkopf
,
P.
,
Ott
,
O. J.
,
Frey
,
B.
,
Wadepohl
,
M.
,
Sauer
,
R.
,
Fietkau
,
R.
, and
Gaipl
,
U. S.
,
2010
, “
Biological Rationales and Clinical Applications of Temperature Controlled Hyperthermia—Implications for Multimodal Cancer Treatments
,”
Curr. Med. Chem.
,
17
(
27
), pp.
3045
3057
.10.2174/092986710791959774
23.
Robinson
,
M. P.
, and
Pegg
,
D. E.
,
1999
, “
Rapid Electromagnetic Warming of Cells and Tissues
,”
IEEE Trans. Biomed. Eng.
,
46
(
12
), pp.
1413
1425
.10.1109/10.804569
24.
Stauffer
,
P. R.
,
Cetas
,
T. C.
, and
Jones
,
R. C.
,
1984
, “
Magnetic Induction Heating of Ferromagnetic Implants for Inducing Localized Hyperthermia in Deep-Seated Tumors
,”
IEEE Trans. Biomed. Eng.
,
31
(
2
), pp.
235
251
.10.1109/TBME.1984.325334
25.
Lucia
,
O.
,
Maussion
,
P.
,
Dede
,
E. J.
, and
Burdio
,
J. M.
,
2014
, “
Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges
,”
IEEE Trans. Ind. Electron.
,
61
(
5
), pp.
2509
2520
.10.1109/TIE.2013.2281162
26.
Silva
,
A. C.
,
Oliveira
,
T. R.
,
Mamani
,
J. B.
,
Malheiros
,
S. M.
,
Malavolta
,
L.
,
Pavon
,
L. F.
,
Sibov
,
T. T.
,
2011
, “
Application of Hyperthermia Induced by Superparamagnetic Iron Oxide Nanoparticles in Glioma Treatment
,”
Int. J. Nanomed.
,
6
, pp.
591
603
.10.2147/IJN.S14737
27.
Gaitas
,
A.
, and
Kim
,
G.
,
2015
, “
Inductive Heating Kills Cells That Contribute to Plaque: A Proof-of-Concept
,”
PeerJ
,
3
, p.
e929
.10.7717/peerj.929
28.
Sasayama
,
T.
,
Yoshida
,
T.
,
Tanabe
,
K.
,
Tsujimura
,
N.
, and
Enpuku
,
K.
,
2015
, “
Hysteresis Loss of Fractionated Magnetic Nanoparticles for Hyperthermia Application
,”
IEEE Trans. Magn.
,
51
(
11
), pp.
1
4
.10.1109/TMAG.2015.2438080
29.
Hergt
,
R.
,
Andra
,
W.
,
d'Ambly
,
C. G.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Richter
,
U.
, and
Schmidt
,
H. G.
,
1998
, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
,
34
(
5
), pp.
3745
3754
.10.1109/20.718537
30.
Day
,
E. S.
,
Morton
,
J. G.
, and
West
,
J. L.
,
2009
, “
Nanoparticles for Thermal Cancer Therapy
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074001
.10.1115/1.3156800
31.
Deatsch
,
A. E.
, and
Evans
,
B. A.
,
2014
, “
Heating Efficiency in Magnetic Nanoparticle Hyperthermia
,”
J. Magn. Magn. Mater.
,
354
, pp.
163
172
.10.1016/j.jmmm.2013.11.006
32.
Rosenblum
,
D.
,
Joshi
,
N.
,
Tao
,
W.
,
Karp
,
J. M.
, and
Peer
,
D.
,
2018
, “
Progress and Challenges Towards Targeted Delivery of Cancer Therapeutics
,”
Nat. Commun.
,
9
(
1
), p.
1410
.10.1038/s41467-018-03705-y
33.
Ulbrich
,
K.
,
Holá
,
K.
,
Šubr
,
V.
,
Bakandritsos
,
A.
,
Tuček
,
J.
, and
Zbořil
,
R.
,
2016
, “
Targeted Drug Delivery With Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies
,”
Chem. Rev.
,
116
(
9
), pp.
5338
5431
.10.1021/acs.chemrev.5b00589
34.
Du
,
V.
,
Luciani
,
N.
,
Richard
,
S.
,
Mary
,
G.
,
Gay
,
C.
,
Mazuel
,
F.
,
Reffay
,
M.
,
Menasche
,
P.
,
Agbulut
,
O.
, and
Wilhelm
,
C.
,
2017
, “
A 3D Magnetic Tissue Stretcher for Remote Mechanical Control of Embryonic Stem Cell Differentiation
,”
Nat. Commun.
,
8
(
1
), p.
400
.10.1038/s41467-017-00543-2
35.
Moise
,
S.
,
Byrne
,
J. M.
,
El Haj
,
A. J.
, and
Telling
,
N. D.
,
2018
, “
The Potential of Magnetic Hyperthermia for Triggering the Differentiation of Cancer Cells
,”
Nanoscale
,
10
(
44
), pp.
20519
20525
.10.1039/C8NR05946B
36.
Lee
,
J. H.
,
Huh
,
Y. M.
,
Jun
,
Y. W.
,
Seo
,
J. W.
,
Jang
,
J. T.
,
Song
,
H. T.
,
Kim
,
S.
,
2007
, “
Artificially Engineered Magnetic Nanoparticles for Ultra-Sensitive Molecular Imaging
,”
Nat. Med.
,
13
(
1
), pp.
95
99
.10.1038/nm1467
37.
Wang
,
Z.
,
Xue
,
X.
,
Lu
,
H.
,
He
,
Y.
,
Lu
,
Z.
,
Chen
,
Z.
,
Yuan
,
Y.
,
2020
, “
Two-Way Magnetic Resonance Tuning and Enhanced Subtraction Imaging for Non-Invasive and Quantitative Biological Imaging
,”
Nat. Nanotechnol.
,
15
(
6
), pp.
482
490
.10.1038/s41565-020-0678-5
38.
Galanzha
,
E. I.
,
Shashkov
,
E. V.
,
Kelly
,
T.
,
Kim
,
J. W.
,
Yang
,
L.
, and
Zharov
,
V. P.
,
2009
, “
In Vivo Magnetic Enrichment and Multiplex Photoacoustic Detection of Circulating Tumour Cells
,”
Nat. Nanotechnol.
,
4
(
12
), pp.
855
860
.10.1038/nnano.2009.333
39.
Wang
,
Y.
,
Dostalek
,
J.
, and
Knoll
,
W.
,
2011
, “
Magnetic Nanoparticle-Enhanced Biosensor Based on Grating-Coupled Surface Plasmon Resonance
,”
Anal. Chem.
,
83
(
16
), pp.
6202
6207
.10.1021/ac200751s
40.
Zhang
,
Q.
,
Li
,
L.
,
Qiao
,
Z.
,
Lei
,
C.
,
Fu
,
Y.
,
Xie
,
Q.
,
Yao
,
S.
,
Li
,
Y.
, and
Ying
,
Y.
,
2017
, “
Electrochemical Conversion of Fe3O4 Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1
,”
Anal. Chem.
,
89
(
22
), pp.
12145
12151
.10.1021/acs.analchem.7b02784
41.
Li
,
J. H.
,
Santos-Otte
,
P.
,
Au
,
B.
,
Rentsch
,
J.
,
Block
,
S.
, and
Ewers
,
H.
,
2020
, “
Directed Manipulation of Membrane Proteins by Fluorescent Magnetic Nanoparticles
,”
Nat. Commun.
,
11
(
1
), p.
4259
.10.1038/s41467-020-18087-3
42.
Wu
,
C. H.
,
Huang
,
Y. Y.
,
Chen
,
P.
,
Hoshino
,
K.
,
Liu
,
H.
,
Frenkel
,
E. P.
,
Zhang
,
J. X.
, and
Sokolov
,
K. V.
,
2013
, “
Versatile Immunomagnetic Nanocarrier Platform for Capturing Cancer Cells
,”
ACS Nano
,
7
(
10
), pp.
8816
8823
.10.1021/nn403281e
43.
Pottler
,
M.
,
Fliedner
,
A.
,
Bergmann
,
J.
,
Bui
,
L. K.
,
Muhlberger
,
M.
,
Braun
,
C.
,
Graw
,
M.
,
2019
, “
Magnetic Tissue Engineering of the Vocal Fold Using Superparamagnetic Iron Oxide Nanoparticles
,”
Tissue Eng. Part A
,
25
(
21–22
), pp.
1470
1477
.10.1089/ten.tea.2019.0009
44.
Lee
,
J.-H.
,
Jang
,
J.-T.
,
Choi
,
J.-S.
,
Moon
,
S. H.
,
Noh
,
S.-H.
,
Kim
,
J.-W.
,
Kim
,
J.-G.
,
Kim
,
I.-S.
,
Park
,
K. I.
, and
Cheon
,
J.
,
2011
, “
Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction
,”
Nat. Nanotechnol.
,
6
(
7
), pp.
418
422
.10.1038/nnano.2011.95
45.
Huang
,
H.
,
Choi
,
J. K.
,
Rao
,
W.
,
Zhao
,
S.
,
Agarwal
,
P.
,
Zhao
,
G.
, and
He
,
X.
,
2015
, “
Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification
,”
Adv. Funct. Mater.
,
25
(
44
), pp.
6839
6850
.10.1002/adfm.201503047
46.
Manuchehrabadi
,
N.
,
Gao
,
Z.
,
Zhang
,
J.
,
Ring
,
H. L.
,
Shao
,
Q.
,
Liu
,
F.
,
McDermott
,
M.
,
2017
, “
Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles
,”
Sci. Transl. Med.
,
9
(
379
), p.
eaah4586
.10.1126/scitranslmed.aah4586
47.
Thiesen
,
B.
, and
Jordan
,
A.
,
2008
, “
Clinical Applications of Magnetic Nanoparticles for Hyperthermia
,”
Int. J. Hyperthermia
,
24
(
6
), pp.
467
474
.10.1080/02656730802104757
48.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
.10.1038/nrc1591
49.
Curra
,
F. P.
, and
Crum
,
L. A.
,
2003
, “
Therapeutic Ultrasound: Surgery and Drug Delivery
,”
Acoust. Sci. Technol.
,
24
(
6
), pp.
343
348
.10.1250/ast.24.343
50.
Oleson
,
J. R.
,
1984
, “
A Review of Magnetic Induction Methods for Hyperthermia Treatment of Cancer
,”
IEEE Trans. Biomed. Eng.
,
31
(
1
), pp.
91
97
.10.1109/TBME.1984.325374
51.
Rudnev
,
V.
,
Loveless
,
D.
,
Cook
,
R. L.
, and
Black
,
M.
,
2002
,
Handbook of Induction Heating
,
CRC Press
, Boca Raton, FL.
52.
Kriezis
,
E. E.
,
Tsiboukis
,
T. D.
,
Panas
,
S. M.
, and
Tegopoulos
,
J. A.
,
1992
, “
Eddy Currents—Theory and Applications
,”
Proc. IEEE
,
80
(
10
), pp.
1559
1589
.10.1109/5.168666
53.
Liu
,
X.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Zhu
,
W.
,
Li
,
G.
,
Ma
,
X.
,
Zhang
,
Y.
,
2020
, “
Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy
,”
Theranostics
,
10
(
8
), pp.
3793
3815
.10.7150/thno.40805
54.
Kumar
,
C. S.
, and
Mohammad
,
F.
,
2011
, “
Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery
,”
Adv. Drug Delivery Rev.
,
63
(
9
), pp.
789
808
.10.1016/j.addr.2011.03.008
55.
Espinosa
,
A.
,
Kolosnjaj-Tabi
,
J.
,
Abou-Hassan
,
A.
,
Plan Sangnier
,
A.
,
Curcio
,
A.
,
Silva
,
A. K. A.
,
Di Corato
,
R.
,
2018
, “
Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo
,”
Adv. Funct. Mater.
,
28
(
37
), p.
1803660
.10.1002/adfm.201803660
56.
Overgaard
,
K.
, and
Overgaard
,
J.
,
1972
, “
Investigations on the Possibility of a Thermic Tumour Therapy. I. Short-Wave Treatment of a Transplanted Isologous Mouse Mammary Carcinoma
,”
Eur. J. Cancer
,
8
(
1
), pp.
65
78
.10.1016/0014-2964(72)90085-0
57.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
,
1984
, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
10
(
6
), pp.
787
800
.10.1016/0360-3016(84)90379-1
58.
Huang
,
H.
,
Yu
,
K.
,
Mohammadi
,
A.
,
Karanthanasis
,
E.
,
Godley
,
A.
, and
Yu
,
J. S.
,
2017
, “
It's Getting Hot in Here: Targeting Cancer Stem-Like Cells With Hyperthermia
,”
J. Stem Cell Transplant. Biol.
,
2
(
2
), p.
113
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287629/
59.
He
,
X.
,
2011
, “
Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification
,”
Open Biomed. Eng. J.
,
5
(
1
), pp.
47
73
.10.2174/1874120701105010047
60.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5–6
), pp.
355
422
.10.1615/CritRevBiomedEng.v31.i56.10
61.
Diller
,
K. R.
,
2005
, “
Bioheat and Mass Transfer as Viewed Through a Microscope
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
67
84
.10.1115/1.1835354
62.
He
,
X.
,
Bhowmick
,
S.
, and
Bischof
,
J. C.
,
2009
, “
Thermal Therapy in Urologic Systems: A Comparison of Arrhenius and Thermal Isoeffective Dose Models in Predicting Hyperthermic Injury
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074507
.10.1115/1.3128671
63.
LeBrun
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2016
, “
Tumor Shrinkage Study in Magnetic Nanoparticle Hyperthermia Based on Designed Heating Protocols
,”
ASME
Paper No. MNHMT2016-6559.10.1115/MNHMT2016-6559
64.
Bischof
,
J. C.
, and
He
,
X.
,
2005
, “
Thermal Stability of Proteins
,”
Ann. N. Y. Acad. Sci.
,
1066
(
1
), pp.
12
33
.10.1196/annals.1363.003
65.
Rosenberg
,
B.
,
Kemeny
,
G.
,
Switzer
,
R. C.
, and
Hamilton
,
T. C.
,
1971
, “
Quantitative Evidence for Protein Denaturation as the Cause of Thermal Death
,”
Nature
,
232
(
5311
), pp.
471
473
.10.1038/232471a0
66.
LeBrun
,
A.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2017
, “
Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
051101
.10.1115/1.4035246
67.
Bhandari
,
A.
, and
Kuchhal
,
P.
,
2019
, “
The Concept of High Dielectric Material for the Treatment of Liver Cancer Through Microwave Heating
,”
J. Med. Eng. Technol.
,
43
(
3
), pp.
165
172
.10.1080/03091902.2019.1637471
68.
Kotchapradit
,
S.
,
Thosdeekoraphat
,
T.
,
Santalunai
,
S.
, and
Thongsopa
,
C.
,
2018
, “
Improvement of Electric Field Focusing for Deep Hyperthermia in Breast Cancer Treatment by Using Microwave Dielectric Heating With Curved Plate Applicator
,” Proceedings of the 2018 Asia-Pacific Microwave Conference (
APMC
), Kyoto, Japan, Nov. 6–9, pp.
1474
1476
.10.23919/APMC.2018.8617166
69.
He
,
X.
,
McGee
,
S.
,
Coad
,
J. E.
,
Schmidlin
,
F.
,
Iaizzo
,
P. A.
,
Swanlund
,
D. J.
,
Kluge
,
S.
,
Rudie
,
E.
, and
Bischof
,
J. C.
,
2004
, “
Investigation of the Thermal and Tissue Injury Behaviour in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperthermia
,
20
(
6
), pp.
567
593
.10.1080/0265673042000209770
70.
Xu
,
J.
,
Shamul
,
J. G.
,
Wang
,
H.
,
Lin
,
J.
,
Agarwal
,
P.
,
Sun
,
M.
,
Lu
,
X.
,
Tkaczuk
,
K. H. R.
, and
He
,
X.
,
2020
, “
Targeted Heating of Mitochondria Greatly Augments Nanoparticle-Mediated Cancer Chemotherapy
,”
Adv. Healthcare Mater.
,
9
(
14
), p.
e2000181
.10.1002/adhm.202000181
71.
Wang
,
H.
,
Liang
,
Y.
,
Yin
,
Y.
,
Zhang
,
J.
,
Su
,
W.
,
White
,
A. M.
,
Bin
,
J.
,
2021
, “
Carbon Nano-Onion-Mediated Dual Targeting of P-Selectin and P-Glycoprotein to Overcome Cancer Drug Resistance
,”
Nat. Commun.
,
12
(
1
), p.
312
.10.1038/s41467-020-20588-0
72.
Lovell
,
J. F.
,
Jin
,
C. S.
,
Huynh
,
E.
,
Jin
,
H.
,
Kim
,
C.
,
Rubinstein
,
J. L.
,
Chan
,
W. C.
,
Cao
,
W.
,
Wang
,
L. V.
, and
Zheng
,
G.
,
2011
, “
Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents
,”
Nat. Mater.
,
10
(
4
), pp.
324
332
.10.1038/nmat2986
73.
Khokhlova
,
A.
,
Zolotovskii
,
I.
,
Stoliarov
,
D.
,
Vorsina
,
S.
,
Liamina
,
D.
,
Pogodina
,
E.
,
Fotiadi
,
A. A.
,
Sokolovski
,
S. G.
,
Saenko
,
Y.
, and
Rafailov
,
E. U.
,
2019
, “
The Photobiomodulation of Vital Parameters of the Cancer Cell Culture by Low Dose of Near-IR Laser Irradiation
,”
IEEE J. Sel. Top. Quantum Electron.
,
25
(
1
), pp.
1
10
.10.1109/JSTQE.2018.2854539
74.
Wang
,
T.
,
Wang
,
D.
,
Yu
,
H.
,
Feng
,
B.
,
Zhou
,
F.
,
Zhang
,
H.
,
Zhou
,
L.
,
Jiao
,
S.
, and
Li
,
Y.
,
2018
, “
A Cancer Vaccine-Mediated Postoperative Immunotherapy for Recurrent and Metastatic Tumors
,”
Nat. Commun.
,
9
(
1
), p.
1532
.10.1038/s41467-018-03915-4
75.
Wang
,
H.
,
Agarwal
,
P.
,
Zhao
,
S.
,
Yu
,
J.
,
Lu
,
X.
, and
He
,
X.
,
2015
, “
A Biomimetic Hybrid Nanoplatform for Encapsulation and Precisely Controlled Delivery of Theranostic Agents
,”
Nat. Commun.
,
6
(
1
), p.
10081
.10.1038/ncomms10081
76.
Roizin-Towle
,
L.
, and
Pirro
,
J. P.
,
1991
, “
The Response of Human and Rodent Cells to Hyperthermia
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
20
(
4
), pp.
751
756
.10.1016/0360-3016(91)90018-Y
77.
Dennis
,
C. L.
, and
Ivkov
,
R.
,
2013
, “
Physics of Heat Generation Using Magnetic Nanoparticles for Hyperthermia
,”
Int. J. Hyperthermia
,
29
(
8
), pp.
715
729
.10.3109/02656736.2013.836758
78.
Banobre-Lopez
,
M.
,
Teijeiro
,
A.
, and
Rivas
,
J.
,
2013
, “
Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment
,”
Rep. Pract. Oncol. Radiother.
,
18
(
6
), pp.
397
400
.10.1016/j.rpor.2013.09.011
79.
Kossatz
,
S.
,
Grandke
,
J.
,
Couleaud
,
P.
,
Latorre
,
A.
,
Aires
,
A.
,
Crosbie-Staunton
,
K.
,
Ludwig
,
R.
,
2015
, “
Efficient Treatment of Breast Cancer Xenografts With Multifunctionalized Iron Oxide Nanoparticles Combining Magnetic Hyperthermia and Anti-Cancer Drug Delivery
,”
Breast Cancer Res.
,
17
(
1
), p.
66
.10.1186/s13058-015-0576-1
80.
Chang
,
D.
,
Lim
,
M.
,
Goos
,
J.
,
Qiao
,
R.
,
Ng
,
Y. Y.
,
Mansfeld
,
F. M.
,
Jackson
,
M.
,
Davis
,
T. P.
, and
Kavallaris
,
M.
,
2018
, “
Biologically Targeted Magnetic Hyperthermia: Potential and Limitations
,”
Front. Pharmacol.
,
9
(
831
), p.
831
.10.3389/fphar.2018.00831
81.
Obaidat
,
I. M.
,
Issa
,
B.
, and
Haik
,
Y.
,
2015
, “
Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia
,”
Nanomaterials (Basel
),
5
(
1
), pp.
63
89
.10.3390/nano5010063
82.
Dutz
,
S.
, and
Hergt
,
R.
,
2013
, “
Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy
,”
Int. J. Hyperthermia
,
29
(
8
), pp.
790
800
.10.3109/02656736.2013.822993
83.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Taymoorian
,
K.
,
Thiesen
,
B.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Jung
,
K.
,
Jordan
,
A.
,
Wust
,
P.
, and
Loening
,
S. A.
,
2007
, “
Morbidity and Quality of Life During Thermotherapy Using Magnetic Nanoparticles in Locally Recurrent Prostate Cancer: Results of a Prospective Phase I Trial
,”
Int. J. Hyperthermia
,
23
(
3
), pp.
315
323
.10.1080/02656730601175479
84.
Pham
,
H. N.
,
Pham
,
T. H. G.
,
Nguyen
,
D. T.
,
Phan
,
Q. T.
,
Le
,
T. T. H.
,
Ha
,
P. T.
,
Do
,
H. M.
,
Hoang
,
T. M. N.
, and
Nguyen
,
X. P.
,
2017
, “
Magnetic Inductive Heating of Organs of Mouse Models Treated by Copolymer Coated Fe3O4 Nanoparticles
,”
Adv. Nat. Sci.: Nanosci. Nanotechnol.
,
8
(
2
), p.
025013
.10.1088/2043-6254/aa5e23
85.
Liu
,
X. L.
,
Fan
,
H. M.
,
Yi
,
J. B.
,
Yang
,
Y.
,
Choo
,
E. S. G.
,
Xue
,
J. M.
,
Di Fan
,
D.
, and
Ding
,
J.
,
2012
, “
Optimization of Surface Coating on Fe3O4 Nanoparticles for High Performance Magnetic Hyperthermia Agents
,”
J. Mater. Chem.
,
22
(
17
), pp.
8235
8244
.10.1039/c2jm30472d
86.
Fortin
,
J. P.
,
Wilhelm
,
C.
,
Servais
,
J.
,
Menager
,
C.
,
Bacri
,
J. C.
, and
Gazeau
,
F.
,
2007
, “
Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia
,”
J. Am. Chem. Soc.
,
129
(
9
), pp.
2628
2635
.10.1021/ja067457e
87.
Nemati
,
Z.
,
Alonso
,
J.
,
Martinez
,
L. M.
,
Khurshid
,
H.
,
Garaio
,
E.
,
Garcia
,
J. A.
,
Phan
,
M. H.
, and
Srikanth
,
H.
,
2016
, “
Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects
,”
J. Phys. Chem. C
,
120
(
15
), pp.
8370
8379
.10.1021/acs.jpcc.6b01426
88.
Giustini
,
A. J.
,
Ivkov
,
R.
, and
Hoopes
,
P. J.
,
2011
, “
Magnetic Nanoparticle Biodistribution Following Intratumoral Administration
,”
Nanotechnology
,
22
(
34
), p.
345101
.10.1088/0957-4484/22/34/345101
89.
Wang
,
L.
,
Huang
,
J.
,
Chen
,
H.
,
Wu
,
H.
,
Xu
,
Y.
,
Li
,
Y.
,
Yi
,
H.
,
Wang
,
Y. A.
,
Yang
,
L.
, and
Mao
,
H.
,
2017
, “
Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles With T1-T2 Switchable Magnetic Resonance Imaging Contrast
,”
ACS Nano
,
11
(
5
), pp.
4582
4592
.10.1021/acsnano.7b00038
90.
Liu
,
X. L.
, and
Fan
,
H. M.
,
2014
, “
Innovative Magnetic Nanoparticle Platform for Magnetic Resonance Imaging and Magnetic Fluid Hyperthermia Applications
,”
Curr. Opin. Chem. Eng.
,
4
, pp.
38
46
.10.1016/j.coche.2013.12.010
91.
Du
,
Y.
,
Liu
,
X.
,
Liang
,
Q.
,
Liang
,
X. J.
, and
Tian
,
J.
,
2019
, “
Optimization and Design of Magnetic Ferrite Nanoparticles With Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy
,”
Nano Lett.
,
19
(
6
), pp.
3618
3626
.10.1021/acs.nanolett.9b00630
92.
Bonilla
,
A. M.
, and
Gonzalez
,
P. H.
,
2017
, “
Hybrid Polymeric-Magnetic Nanoparticles in Cancer Treatments
,”
Curr. Pharm. Des.
,
23
(
35
), pp.
5392
5402
.10.2174/1381612823666170519115601
93.
van Landeghem
,
F. K. H.
,
Maier-Hauff
,
K.
,
Jordan
,
A.
,
Hoffmann
,
K.-T.
,
Gneveckow
,
U.
,
Scholz
,
R.
,
Thiesen
,
B.
,
Brück
,
W.
, and
von Deimling
,
A.
,
2009
, “
Post-Mortem Studies in Glioblastoma Patients Treated With Thermotherapy Using Magnetic Nanoparticles
,”
Biomaterials
,
30
(
1
), pp.
52
57
.10.1016/j.biomaterials.2008.09.044
94.
Zhang
,
J.
,
Dewilde
,
A. H.
,
Chinn
,
P.
,
Foreman
,
A.
,
Barry
,
S.
,
Kanne
,
D.
, and
Braunhut
,
S. J.
,
2011
, “
Herceptin-Directed Nanoparticles Activated by an Alternating Magnetic Field Selectively Kill HER-2 Positive Human Breast Cells In Vitro Via Hyperthermia
,”
Int. J. Hyperthermia
,
27
(
7
), pp.
682
697
.10.3109/02656736.2011.609863
95.
DeNardo
,
S. J.
,
DeNardo
,
G. L.
,
Natarajan
,
A.
,
Miers
,
L. A.
,
Foreman
,
A. R.
,
Gruettner
,
C.
,
Adamson
,
G. N.
, and
Ivkov
,
R.
,
2007
, “
Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF-Induced Thermoablative Therapy for Human Breast Cancer in Mice
,”
J. Nucl. Med.
,
48
(
3
), pp.
437
444
.https://pubmed.ncbi.nlm.nih.gov/17332622/
96.
Thomas
,
R. G.
,
Moon
,
M. J.
,
Lee
,
H.
,
Sasikala
,
A. R.
,
Kim
,
C. S.
,
Park
,
I. K.
, and
Jeong
,
Y. Y.
,
2015
, “
Hyaluronic Acid Conjugated Superparamagnetic Iron Oxide Nanoparticle for Cancer Diagnosis and Hyperthermia Therapy
,”
Carbohydr. Polym.
,
131
, pp.
439
446
.10.1016/j.carbpol.2015.06.010
97.
Cędrowska
,
E.
,
Pruszyński
,
M.
,
Gawęda
,
W.
,
Żuk
,
M.
,
Krysiński
,
P.
,
Bruchertseifer
,
F.
,
Morgenstern
,
A.
,
Karageorgou
,
M.-A.
,
Bouziotis
,
P.
, and
Bilewicz
,
A.
,
2020
, “
Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled With (225)Ac as a Perspective Tool for Combined Alpha-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer
,”
Molecules
,
25
(
5
), p.
1025
.10.3390/molecules25051025
98.
Peng
,
H.
,
Tang
,
J.
,
Zheng
,
R.
,
Guo
,
G.
,
Dong
,
A.
,
Wang
,
Y.
, and
Yang
,
W.
,
2017
, “
Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy
,”
Adv. Healthcare Mater.
,
6
(
7
), p.
1601289
.10.1002/adhm.201601289
99.
Giwa
,
S.
,
Lewis
,
J. K.
,
Alvarez
,
L.
,
Langer
,
R.
,
Roth
,
A. E.
,
Church
,
G. M.
,
Markmann
,
J. F.
,
2017
, “
The Promise of Organ and Tissue Preservation to Transform Medicine
,”
Nat. Biotechnol.
,
35
(
6
), pp.
530
542
.10.1038/nbt.3889
100.
Fahy
,
G. M.
,
Wowk
,
B.
, and
Wu
,
J.
,
2006
, “
Cryopreservation of Complex Systems: The Missing Link in the Regenerative Medicine Supply Chain
,”
Rejuvenation Res.
,
9
(
2
), pp.
279
291
.10.1089/rej.2006.9.279
101.
Huang
,
H.
,
He
,
X.
, and
Yarmush
,
M. L.
,
2021
, “
Advanced Technologies for the Preservation of Mammalian Biospecimens
,”
Nat. Biomed. Eng.
,
5
(
8
), pp.
793
804
.10.1038/s41551-021-00784-z
102.
Mazur
,
P.
,
1970
, “
Cryobiology: The Freezing of Biological Systems
,”
Science
,
168
(
3934
), pp.
939
949
.10.1126/science.168.3934.939
103.
Chiu-Lam
,
A.
,
Staples
,
E.
,
Pepine
,
C. J.
, and
Rinaldi
,
C.
,
2021
, “
Perfusion, Cryopreservation, and Nanowarming of Whole Hearts Using Colloidally Stable Magnetic Cryopreservation Agent Solutions
,”
Sci. Adv.
,
7
(
2
), p.
eabe3005
.10.1126/sciadv.abe3005
104.
Chang
,
T.
, and
Zhao
,
G.
,
2021
, “
Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges
,”
Adv. Sci.
,
8
(
6
), p.
2002425
.10.1002/advs.202002425
105.
Trounson
,
A.
, and
Mohr
,
L.
,
1983
, “
Human Pregnancy Following Cryopreservation, Thawing and Transfer of an Eight-Cell Embryo
,”
Nature
,
305
(
5936
), pp.
707
709
.10.1038/305707a0
106.
Rienzi
,
L.
,
Gracia
,
C.
,
Maggiulli
,
R.
,
LaBarbera
,
A. R.
,
Kaser
,
D. J.
,
Ubaldi
,
F. M.
,
Vanderpoel
,
S.
, and
Racowsky
,
C.
,
2016
, “
Oocyte, Embryo and Blastocyst Cryopreservation in ART: Systematic Review and Meta-Analysis Comparing Slow-Freezing Versus Vitrification to Produce Evidence for the Development of Global Guidance
,”
Hum. Reprod. Update
,
23
(
2
), pp.
139
155
.10.1093/humupd/dmw038
107.
Frederickson
,
R.
,
2000
, “
Cryopreservation by Vitrification
,”
Nat. Biotechnol.
,
18
(
3
), p.
250
.10.1038/73652
108.
Rall
,
W. F.
, and
Fahy
,
G. M.
,
1985
, “
Ice-Free Cryopreservation of Mouse Embryos at −196 °C by Vitrification
,”
Nature
,
313
(
6003
), pp.
573
575
.10.1038/313573a0
109.
Palasz
,
A. T.
, and
Mapletoft
,
R. J.
,
1996
, “
Cryopreservation of Mammalian Embryos and Oocytes: Recent Advances
,”
Biotechnol. Adv.
,
14
(
2
), pp.
127
149
.10.1016/0734-9750(96)00005-5
110.
He
,
X.
,
Park
,
E. Y.
,
Fowler
,
A.
,
Yarmush
,
M. L.
, and
Toner
,
M.
,
2008
, “
Vitrification by Ultra-Fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Micro-Capillary: A Study Using Murine Embryonic Stem Cells
,”
Cryobiology
,
56
(
3
), pp.
223
232
.10.1016/j.cryobiol.2008.03.005
111.
Zhan
,
L.
,
Guo
,
S.-Z.
,
Kangas
,
J.
,
Shao
,
Q.
,
Shiao
,
M.
,
Khosla
,
K.
,
Low
,
W. C.
,
McAlpine
,
M. C.
, and
Bischof
,
J.
,
2021
, “
Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation
,”
Adv. Sci.
,
8
((
11
), p.
2004605
.10.1002/advs.202004605
112.
Finger
,
E. B.
, and
Bischof
,
J. C.
,
2018
, “
Cryopreservation by Vitrification: A Promising Approach for Transplant Organ Banking
,”
Curr. Opin. Organ Transplant.
,
23
(
3
), pp.
353
360
.10.1097/MOT.0000000000000534
113.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
,
Phan
,
J.
,
Rasch
,
C.
,
Chang
,
A.
, and
Zendejas
,
E.
,
2004
, “
Cryopreservation of Organs by Vitrification: Perspectives and Recent Advances
,”
Cryobiology
,
48
(
2
), pp.
157
178
.10.1016/j.cryobiol.2004.02.002
114.
Hopkins
,
J. B.
,
Badeau
,
R.
,
Warkentin
,
M.
, and
Thorne
,
R. E.
,
2012
, “
Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions
,”
Cryobiology
,
65
(
3
), pp.
169
178
.10.1016/j.cryobiol.2012.05.010
115.
Akiyama
,
Y.
,
Shinose
,
M.
,
Watanabe
,
H.
,
Yamada
,
S.
, and
Kanda
,
Y.
,
2019
, “
Cryoprotectant-Free Cryopreservation of Mammalian Cells by Superflash Freezing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
16
), pp.
7738
7743
.10.1073/pnas.1808645116
116.
Peyridieu
,
J. F.
,
Baudot
,
A.
,
Boutron
,
P.
,
Mazuer
,
J.
,
Odin
,
J.
,
Ray
,
A.
,
Chapelier
,
E.
,
Payen
,
E.
, and
Descotes
,
J. L.
,
1996
, “
Critical Cooling and Warming Rates to Avoid Ice Crystallization in Small Pieces of Mammalian Organs Permeated With Cryoprotective Agents
,”
Cryobiology
,
33
(
4
), pp.
436
446
.10.1006/cryo.1996.0044
117.
Fahy
,
G. M.
, and
Wowk
,
B.
,
2015
, “
Principles of Cryopreservation by Vitrification
,”
Cryopreservation and Freeze-Drying Protocols
,
W. F.
Wolkers
and
H.
Oldenhof
, eds.,
Springer
,
New York
, pp.
21
82
.
118.
Fowler
,
A.
, and
Toner
,
M.
,
2005
, “
Cryo-Injury and Biopreservation
,”
Ann. N. Y. Acad. Sci.
,
1066
(
1
), pp.
119
135
.10.1196/annals.1363.010
119.
Jin
,
B.
,
Kusanagi
,
K.
,
Ueda
,
M.
,
Seki
,
S.
,
Valdez
,
D. M.
, Jr.
,
Edashige
,
K.
, and
Kasai
,
M.
,
2008
, “
Formation of Extracellular and Intracellular Ice During Warming of Vitrified Mouse Morulae and Its Effect on Embryo Survival
,”
Cryobiology
,
56
(
3
), pp.
233
240
.10.1016/j.cryobiol.2008.03.004
120.
He
,
X.
, and
Bischof
,
J. C.
,
2005
, “
Analysis of Thermal Stress in Cryosurgery of Kidneys
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
656
661
.10.1115/1.1934021
121.
Solanki
,
P. K.
,
Bischof
,
J. C.
, and
Rabin
,
Y.
,
2017
, “
Thermo-Mechanical Stress Analysis of Cryopreservation in Cryobags and the Potential Benefit of Nanowarming
,”
Cryobiology
,
76
, pp.
129
139
.10.1016/j.cryobiol.2017.02.001
122.
Rabin
,
Y.
,
Steif
,
P. S.
,
Taylor
,
M. J.
,
Julian
,
T. B.
, and
Wolmark
,
N.
,
1996
, “
An Experimental Study of the Mechanical Response of Frozen Biological Tissues at Cryogenic Temperatures
,”
Cryobiology
,
33
(
4
), pp.
472
482
.10.1006/cryo.1996.0048
123.
Etheridge
,
M. L.
,
Campbell
,
S. A.
,
Erdman
,
A. G.
,
Haynes
,
C. L.
,
Wolf
,
S. M.
, and
McCullough
,
J.
,
2013
, “
The Big Picture on Nanomedicine: The State of Investigational and Approved Nanomedicine Products
,”
Nanomedicine
,
9
(
1
), pp.
1
14
.10.1016/j.nano.2012.05.013
124.
Kim
,
B. Y.
,
Rutka
,
J. T.
, and
Chan
,
W. C.
,
2010
, “
Nanomedicine
,”
N. Engl. J. Med.
,
363
(
25
), pp.
2434
2443
.10.1056/NEJMra0912273
125.
Wang
,
J.
,
Zhao
,
G.
,
Zhang
,
Z.
,
Xu
,
X.
, and
He
,
X.
,
2016
, “
Magnetic Induction Heating of Superparamagnetic Nanoparticles During Rewarming Augments the Recovery of hUCM-MSCs Cryopreserved by Vitrification
,”
Acta Biomater.
,
33
, pp.
264
274
.10.1016/j.actbio.2016.01.026
126.
Hergt
,
R.
,
Dutz
,
S.
, and
Zeisberger
,
M.
,
2010
, “
Validity Limits of the Neel Relaxation Model of Magnetic Nanoparticles for Hyperthermia
,”
Nanotechnology
,
21
(
1
), p.
015706
.10.1088/0957-4484/21/1/015706
127.
Liu
,
X.
,
Zhao
,
G.
,
Chen
,
Z.
,
Panhwar
,
F.
, and
He
,
X.
,
2018
, “
Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs
,”
ACS Appl. Mater. Interfaces
,
10
(
19
), pp.
16822
16835
.10.1021/acsami.8b04496
128.
Gao
,
Z.
,
Ring
,
H. L.
,
Sharma
,
A.
,
Namsrai
,
B.
,
Tran
,
N.
,
Finger
,
E. B.
,
Garwood
,
M.
,
Haynes
,
C. L.
, and
Bischof
,
J. C.
,
2020
, “
Preparation of Scalable Silica-Coated Iron Oxide Nanoparticles for Nanowarming
,”
Adv. Sci. (Weinheim)
,
7
(
4
), p.
1901624
.10.1002/advs.201901624
129.
Pan
,
J.
,
Ren
,
S.
,
Sekar
,
P. K.
,
Peng
,
J.
,
Shu
,
Z.
,
Zhao
,
G.
,
Ding
,
W.
,
Chen
,
M.
, and
Gao
,
D.
,
2019
, “
Investigation of Electromagnetic Resonance Rewarming Enhanced by Magnetic Nanoparticles for Cryopreservation
,”
Langmuir
,
35
(
23
), pp.
7560
7570
.10.1021/acs.langmuir.8b03060
130.
Riedinger
,
A.
,
Guardia
,
P.
,
Curcio
,
A.
,
Garcia
,
M. A.
,
Cingolani
,
R.
,
Manna
,
L.
, and
Pellegrino
,
T.
,
2013
, “
Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles
,”
Nano Lett.
,
13
(
6
), pp.
2399
2406
.10.1021/nl400188q
131.
Kut
,
C.
,
Zhang
,
Y.
,
Hedayati
,
M.
,
Zhou
,
H.
,
Cornejo
,
C.
,
Bordelon
,
D.
,
Mihalic
,
J.
,
2012
, “
Preliminary Study of Injury From Heating Systemically Delivered, Nontargeted Dextran-Superparamagnetic Iron Oxide Nanoparticles in Mice
,”
Nanomedicine (London)
,
7
(
11
), pp.
1697
1711
.10.2217/nnm.12.65
132.
Mornet
,
S.
,
Vasseur
,
S.
,
Grasset
,
F.
,
Veverka
,
P.
,
Goglio
,
G.
,
Demourgues
,
A.
,
Portier
,
J.
,
Pollert
,
E.
, and
Duguet
,
E.
,
2006
, “
Magnetic Nanoparticle Design for Medical Applications
,”
Prog. Solid State Chem.
,
34
(
2–4
), pp.
237
247
.10.1016/j.progsolidstchem.2005.11.010
133.
Hussain
,
S. M.
,
Hess
,
K. L.
,
Gearhart
,
J. M.
,
Geiss
,
K. T.
, and
Schlager
,
J. J.
,
2005
, “
In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells
,”
Toxicol. In Vitro
,
19
(
7
), pp.
975
983
.10.1016/j.tiv.2005.06.034
134.
Naqvi
,
S.
,
Samim
,
M.
,
Abdin
,
M.
,
Ahmed
,
F. J.
,
Maitra
,
A.
,
Prashant
,
C.
, and
Dinda
,
A. K.
,
2010
, “
Concentration-Dependent Toxicity of Iron Oxide Nanoparticles Mediated by Increased Oxidative Stress
,”
Int. J. Nanomed.
,
5
, pp.
983
989
.10.2147/IJN.S13244
135.
Cao
,
Y.
,
Zhao
,
G.
,
Panhwar
,
F.
,
Zhang
,
X.
,
Chen
,
Z.
,
Cheng
,
L.
,
Zang
,
C.
,
Liu
,
F.
,
Zhao
,
Y.
, and
He
,
X.
,
2019
, “
The Unusual Properties of Polytetrafluoroethylene Enable Massive-Volume Vitrification of Stem Cells With Low-Concentration Cryoprotectants
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800289
.10.1002/admt.201800289
136.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
137.
Iakoubovskii
,
K.
,
Mitsuishi
,
K.
,
Nakayama
,
Y.
, and
Furuya
,
K.
,
2008
, “
Mean Free Path of Inelastic Electron Scattering in Elemental Solids and Oxides Using Transmission Electron Microscopy: Atomic Number Dependent Oscillatory Behavior
,”
Phys. Rev. B
,
77
(
10
), p.
104102
.10.1103/PhysRevB.77.104102
138.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
139.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nat. Mater.
,
9
(
1
), pp.
26
30
.10.1038/nmat2568
140.
Périgo
,
E. A.
,
Hemery
,
G.
,
Sandre
,
O.
,
Ortega
,
D.
,
Garaio
,
E.
,
Plazaola
,
F.
, and
Teran
,
F. J.
,
2015
, “
Fundamentals and Advances in Magnetic Hyperthermia
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041302
.10.1063/1.4935688
141.
Merabia
,
S.
,
Shenogin
,
S.
,
Joly
,
L.
,
Keblinski
,
P.
, and
Barrat
,
J. L.
,
2009
, “
Heat Transfer From Nanoparticles: A Corresponding State Analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
36
), pp.
15113
15118
.10.1073/pnas.0901372106
142.
Cao
,
Y.
,
Hassan
,
M.
,
Cheng
,
Y.
,
Chen
,
Z.
,
Wang
,
M.
,
Zhang
,
X.
,
Haider
,
Z.
, and
Zhao
,
G.
,
2019
, “
Multifunctional Photo- and Magnetoresponsive Graphene Oxide-Fe3O4 Nanocomposite-Alginate Hydrogel Platform for Ice Recrystallization Inhibition
,”
ACS Appl. Mater. Interfaces
,
11
(
13
), pp.
12379
12388
.10.1021/acsami.9b02887
143.
Ali
,
L. M. A.
,
Shaker
,
S. A.
,
Pinol
,
R.
,
Millan
,
A.
,
Hanafy
,
M. Y.
,
Helmy
,
M. H.
,
Kamel
,
M. A.
, and
Mahmoud
,
S. A.
,
2020
, “
Effect of Superparamagnetic Iron Oxide Nanoparticles on Glucose Homeostasis on Type 2 Diabetes Experimental Model
,”
Life Sci.
,
245
, p.
117361
.10.1016/j.lfs.2020.117361
144.
Dini
,
S.
,
Zakeri
,
M.
,
Ebrahimpour
,
S.
,
Dehghanian
,
F.
, and
Esmaeili
,
A.
,
2021
, “
Quercetinconjugated Superparamagnetic Iron Oxide Nanoparticles Modulate Glucose Metabolism-Related Genes and miR-29 Family in the Hippocampus of Diabetic Rats
,”
Sci. Rep.
,
11
(
1
), p.
8618
.10.1038/s41598-021-87687-w
145.
Stanley
,
S. A.
,
Gagner
,
J. E.
,
Damanpour
,
S.
,
Yoshida
,
M.
,
Dordick
,
J. S.
, and
Friedman
,
J. M.
,
2012
, “
Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice
,”
Science
,
336
(
6081
), pp.
604
608
.10.1126/science.1216753
146.
Chaussy
,
C.
,
Thuroff
,
S.
,
Rebillard
,
X.
, and
Gelet
,
A.
,
2005
, “
Technology Insight: High-Intensity Focused Ultrasound for Urologic Cancers
,”
Nat. Clin. Pract. Urol.
,
2
(
4
), pp.
191
198
.10.1038/ncpuro0150
147.
Chaussy
,
C. G.
, and
Thuroff
,
S. F.
,
2011
, “
Robotic High-Intensity Focused Ultrasound for Prostate Cancer: What Have We Learned in 15 Years of Clinical Use?
,”
Curr. Urol. Rep.
,
12
(
3
), pp.
180
187
.10.1007/s11934-011-0184-2
148.
Marques
,
R. E.
,
Ferreira
,
N. P.
,
Sousa
,
D. C.
,
Barata
,
A. D.
,
Sens
,
P.
,
Marques-Neves
,
C.
, and
Abegão Pinto
,
L.
,
2021
, “
High Intensity Focused Ultrasound for Glaucoma: 1-Year Results From a Prospective Pragmatic Study
,”
Eye (London)
,
35
(
2
), pp.
484
489
.10.1038/s41433-020-0878-0
149.
Piper
,
R. J.
,
Hughes
,
M. A.
,
Moran
,
C. M.
, and
Kandasamy
,
J.
,
2016
, “
Focused Ultrasound as a Non-Invasive Intervention for Neurological Disease: A Review
,”
Br. J. Neurosurg.
,
30
(
3
), pp.
286
293
.10.3109/02688697.2016.1173189
150.
Jenne
,
J. W.
,
Preusser
,
T.
, and
Gunther
,
M.
,
2012
, “
High-Intensity Focused Ultrasound: Principles, Therapy Guidance, Simulations and Applications
,”
Z. Med. Phys.
,
22
(
4
), pp.
311
322
.10.1016/j.zemedi.2012.07.001
151.
Abu-Zidan
,
F. M.
,
Hefny
,
A. F.
, and
Corr
,
P.
,
2011
, “
Clinical Ultrasound Physics
,”
J. Emerg., Trauma, Shock
,
4
(
4
), pp.
501
503
.10.4103/0974-2700.86646
152.
Bailey
,
M. R.
,
Khokhlova
,
V. A.
,
Sapozhnikov
,
O. A.
,
Kargl
,
S. G.
, and
Crum
,
L. A.
,
2003
, “
Physical Mechanisms of the Therapeutic Effect of Ultrasound—(A Review)
,”
Acoust. Phys.
,
49
(
4
), pp.
369
388
.10.1134/1.1591291
153.
Warde
,
N.
,
2010
, “
Prostate Cancer: High-Intensity Focused Ultrasound Therapy: Effects on Urinary and Erectile Function and Quality of Life
,”
Nat. Rev. Urol.
,
7
(
10
), p.
531
.10.1038/nrurol.2010.148
154.
Haar
,
G. T.
, and
Coussios
,
C.
,
2007
, “
High Intensity Focused Ultrasound: Physical Principles and Devices
,”
Int. J. Hyperthermia
,
23
(
2
), pp.
89
104
.10.1080/02656730601186138
155.
Zhou
,
Y. F.
,
2011
, “
High Intensity Focused Ultrasound in Clinical Tumor Ablation
,”
World J. Clin. Oncol.
,
2
(
1
), pp.
8
27
.10.5306/wjco.v2.i1.8
156.
Wu
,
F.
,
Wang
,
Z. B.
,
Cao
,
Y. D.
,
Chen
,
W. Z.
,
Bai
,
J.
,
Zou
,
J. Z.
, and
Zhu
,
H.
,
2003
, “
A Randomised Clinical Trial of High-Intensity Focused Ultrasound Ablation for the Treatment of Patients With Localised Breast Cancer
,”
Br. J. Cancer
,
89
(
12
), pp.
2227
2233
.10.1038/sj.bjc.6601411
157.
Illing
,
R. O.
,
Kennedy
,
J. E.
,
Wu
,
F.
,
ter Haar
,
G. R.
,
Protheroe
,
A. S.
,
Friend
,
P. J.
,
Gleeson
,
F. V.
,
Cranston
,
D. W.
,
Phillips
,
R. R.
, and
Middleton
,
M. R.
,
2005
, “
The Safety and Feasibility of Extracorporeal High-Intensity Focused Ultrasound (HIFU) for the Treatment of Liver and Kidney Tumours in a Western Population
,”
Br. J. Cancer
,
93
(
8
), pp.
890
895
.10.1038/sj.bjc.6602803
158.
Hutchinson
,
L.
,
2011
, “
Treatment Modalities: HIFU Is Effective for Unresectable HCC
,”
Nat. Rev. Clin. Oncol.
,
8
(
7
), p.
385
.10.1038/nrclinonc.2011.81
159.
Thuroff
,
S.
,
Chaussy
,
C.
,
Vallancien
,
G.
,
Wieland
,
W.
,
Kiel
,
H. J.
,
Le Duc
,
A.
,
Desgrandchamps
,
F.
,
De La Rosette
,
J. J.
, and
Gelet
,
A.
,
2003
, “
High-Intensity Focused Ultrasound and Localized Prostate Cancer: Efficacy Results From the European Multicentric Study
,”
J. Endourol.
,
17
(
8
), pp.
673
677
.10.1089/089277903322518699
160.
Wu
,
F.
,
Wang
,
Z. B.
,
Chen
,
W. Z.
,
Zou
,
J. Z.
,
Bai
,
J.
,
Zhu
,
H.
,
Li
,
K. Q.
,
2004
, “
Extracorporeal Focused Ultrasound Surgery for Treatment of Human Solid Carcinomas: Early Chinese Clinical Experience
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
245
260
.10.1016/j.ultrasmedbio.2003.10.010
161.
Sadeghi-Goughari
,
M.
,
Jeon
,
S.
, and
Kwon
,
H. J.
,
2020
, “
Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced With Nanoparticles
,”
IEEE Trans. Biomed. Eng.
,
67
(
11
), pp.
3083
3093
.10.1109/TBME.2020.2975746
162.
Sibille
,
A.
,
Prat
,
F.
,
Chapelon
,
J. Y.
,
Abou el Fadil
,
F.
,
Henry
,
L.
,
Theillere
,
Y.
,
Ponchon
,
T.
, and
Cathignol
,
D.
,
1993
, “
Extracorporeal Ablation of Liver Tissue by High-Intensity Focused Ultrasound
,”
Oncology
,
50
(
5
), pp.
375
379
.10.1159/000227213
163.
Dubinsky
,
T. J.
,
Cuevas
,
C.
,
Dighe
,
M. K.
,
Kolokythas
,
O.
, and
Hwang
,
J. H.
,
2008
, “
High-Intensity Focused Ultrasound: Current Potential and Oncologic Applications
,”
AJR Am. J. Roentgenol.
,
190
(
1
), pp.
191
199
.10.2214/AJR.07.2671
164.
Devarakonda
,
S. B.
,
Myers
,
M. R.
,
Giridhar
,
D.
,
Dibaji
,
S. A.
, and
Banerjee
,
R. K.
,
2017
, “
Enhanced Thermal Effect Using Magnetic Nano-Particles During High-Intensity Focused Ultrasound
,”
PLoS One
,
12
(
4
), p.
e0175093
.10.1371/journal.pone.0175093
165.
Gianfelice
,
D.
,
Khiat
,
A.
,
Boulanger
,
Y.
,
Amara
,
M.
, and
Belblidia
,
A.
,
2003
, “
Feasibility of Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery as an Adjunct to Tamoxifen Therapy in High-Risk Surgical Patients With Breast Carcinoma
,”
J. Vasc. Interv. Radiol.
,
14
(
10
), pp.
1275
1282
.10.1097/01.RVI.0000092900.73329.A2
166.
Furusawa
,
H.
,
Namba
,
K.
,
Thomsen
,
S.
,
Akiyama
,
F.
,
Bendet
,
A.
,
Tanaka
,
C.
,
Yasuda
,
Y.
, and
Nakahara
,
H.
,
2006
, “
Magnetic Resonance-Guided Focused Ultrasound Surgery of Breast Cancer: Reliability and Effectiveness
,”
J. Am. Coll. Surg.
,
203
(
1
), pp.
54
63
.10.1016/j.jamcollsurg.2006.04.002
167.
Clark
,
A.
,
Bonilla
,
S.
,
Suo
,
D.
,
Shapira
,
Y.
, and
Averkiou
,
M.
,
2021
, “
Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments
,”
Ultrasound Med. Biol.
,
47
(
8
), pp.
2296
2309
.10.1016/j.ultrasmedbio.2021.03.035
168.
Kaczmarek
,
K.
,
Hornowski
,
T.
,
Kubovcikova
,
M.
,
Timko
,
M.
,
Koralewski
,
M.
, and
Jozefczak
,
A.
,
2018
, “
Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles
,”
ACS Appl. Mater. Interfaces
,
10
(
14
), pp.
11554
11564
.10.1021/acsami.8b02496
169.
Ho
,
V. H.
,
Smith
,
M. J.
, and
Slater
,
N. K.
,
2011
, “
Effect of Magnetite Nanoparticle Agglomerates on the Destruction of Tumor Spheroids Using High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
37
(
1
), pp.
169
175
.10.1016/j.ultrasmedbio.2010.09.007
170.
Ahmad Reza Dibaji
,
S.
,
Al-Rjoub
,
M. F.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
,
2013
, “
Enhanced Heat Transfer and Thermal Dose Using Magnetic Nanoparticles During HIFU Thermal Ablation—An In-Vitro Study
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
4
), p.
040902
.10.1115/1.4027340
171.
Józefczak
,
A.
,
Kaczmarek
,
K.
,
Hornowski
,
T.
,
Kubovčíková
,
M.
,
Rozynek
,
Z.
,
Timko
,
M.
, and
Skumiel
,
A.
,
2016
, “
Magnetic Nanoparticles for Enhancing the Effectiveness of Ultrasonic Hyperthermia
,”
Appl. Phys. Lett.
,
108
(
26
), p.
263701
.10.1063/1.4955130
172.
Tang
,
H.
,
Guo
,
Y.
,
Peng
,
L.
,
Fang
,
H.
,
Wang
,
Z.
,
Zheng
,
Y.
,
Ran
,
H.
, and
Chen
,
Y.
,
2018
, “
In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy
,”
ACS Appl. Mater. Interfaces
,
10
(
18
), pp.
15428
15441
.10.1021/acsami.8b01967
173.
Sun
,
Y.
,
Zheng
,
Y.
,
Ran
,
H.
,
Zhou
,
Y.
,
Shen
,
H.
,
Chen
,
Y.
,
Chen
,
H.
,
2012
, “
Superparamagnetic PLGA-Iron Oxide Microcapsules for Dual-Modality US/MR Imaging and High Intensity Focused U.S. Breast Cancer Ablation
,”
Biomaterials
,
33
(
24
), pp.
5854
5864
.10.1016/j.biomaterials.2012.04.062
174.
Zhou
,
D.
,
Sun
,
Y.
,
Zheng
,
Y. Y.
,
Ran
,
H. T.
,
Li
,
P.
,
Wang
,
Z. B.
, and
Wang
,
Z. G.
,
2015
, “
Superparamagnetic PLGA-Iron Oxide Microspheres as Contrast Agents for Dual-Imaging and the Enhancement of the Effects of High-Intensity Focused Ultrasound Ablation on Liver Tissue
,”
RSC Adv.
,
5
(
45
), pp.
35693
35703
.10.1039/C5RA00880H
175.
Dutz
,
S.
,
Kettering
,
M.
,
Hilger
,
I.
,
Müller
,
R.
, and
Zeisberger
,
M.
,
2011
, “
Magnetic Multicore Nanoparticles for Hyperthermia—Influence of Particle Immobilization in Tumour Tissue on Magnetic Properties
,”
Nanotechnology
,
22
(
26
), p.
265102
.10.1088/0957-4484/22/26/265102
176.
Lartigue
,
L.
,
Innocenti
,
C.
,
Kalaivani
,
T.
,
Awwad
,
A.
,
Sanchez Duque
,
M. D. M.
,
Guari
,
Y.
,
Larionova
,
J.
,
2011
, “
Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of Their Relaxometric and Magnetic Hyperthermia Properties
,”
J. Am. Chem. Soc.
,
133
(
27
), pp.
10459
10472
.10.1021/ja111448t
177.
Moroz
,
P.
,
Jones
,
S. K.
, and
Gray
,
B. N.
,
2002
, “
Tumor Response to Arterial Embolization Hyperthermia and Direct Injection Hyperthermia in a Rabbit Liver Tumor Model
,”
J. Surg. Oncol.
,
80
(
3
), pp.
149
156
.10.1002/jso.10118
178.
Espinosa
,
A.
,
Bugnet
,
M.
,
Radtke
,
G.
,
Neveu
,
S.
,
Botton
,
G. A.
,
Wilhelm
,
C.
, and
Abou-Hassan
,
A.
,
2015
, “
Can Magneto-Plasmonic Nanohybrids Efficiently Combine Photothermia With Magnetic Hyperthermia?
,”
Nanoscale
,
7
(
45
), pp.
18872
18877
.10.1039/C5NR06168G
179.
Yoo
,
D.
,
Jeong
,
H.
,
Noh
,
S.-H.
,
Lee
,
J.-H.
, and
Cheon
,
J.
,
2013
, “
Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia
,”
Angew. Chem. Int. Ed.
,
52
(
49
), pp.
13047
13051
.10.1002/anie.201306557
180.
Gilchrist
,
R. K.
,
Medal
,
R.
,
Shorey
,
W. D.
,
Hanselman
,
R. C.
,
Parrott
,
J. C.
, and
Taylor
,
C. B.
,
1957
, “
Selective Inductive Heating of Lymph Nodes
,”
Ann. Surg.
,
146
(
4
), pp.
596
606
.10.1097/00000658-195710000-00007
181.
Iglesias
,
G. R.
,
Jabalera
,
Y.
,
Peigneux
,
A.
,
Checa Fernández
,
B. L.
,
Delgado
,
Á. V.
, and
Jimenez-Lopez
,
C.
,
2019
, “
Enhancement of Magnetic Hyperthermia by Mixing Synthetic Inorganic and Biomimetic Magnetic Nanoparticles
,”
Pharmaceutics
,
11
(
6
), p.
273
.10.3390/pharmaceutics11060273
182.
Alphandéry
,
E.
,
Faure
,
S.
,
Seksek
,
O.
,
Guyot
,
F.
, and
Chebbi
,
I.
,
2011
, “
Chains of Magnetosomes Extracted From AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy
,”
ACS Nano
,
5
(
8
), pp.
6279
6296
.10.1021/nn201290k
183.
Gao
,
W.
,
Zheng
,
Y.
,
Wang
,
R.
,
Chen
,
H.
,
Cai
,
X.
,
Lu
,
G.
,
Chu
,
L.
,
2016
, “
A Smart, Phase Transitional and Injectable DOX/PLGA-Fe Implant for Magnetic-Hyperthermia-Induced Synergistic Tumor Eradication
,”
Acta Biomater.
,
29
, pp.
298
306
.10.1016/j.actbio.2015.09.037
184.
Shetake
,
N. G.
,
Kumar
,
A.
,
Gaikwad
,
S.
,
Ray
,
P.
,
Desai
,
S.
,
Ningthoujam
,
R. S.
,
Vatsa
,
R. K.
, and
Pandey
,
B. N.
,
2015
, “
Magnetic Nanoparticle-Mediated Hyperthermia Therapy Induces Tumour Growth Inhibition by Apoptosis and Hsp90/AKT Modulation
,”
Int. J. Hyperthermia
,
31
(
8
), pp.
909
919
.10.3109/02656736.2015.1075072
185.
Xie
,
J.
,
Zhang
,
Y.
,
Yan
,
C.
,
Song
,
L.
,
Wen
,
S.
,
Zang
,
F.
,
Chen
,
G.
,
Ding
,
Q.
,
Yan
,
C.
, and
Gu
,
N.
,
2014
, “
High-Performance PEGylated Mn–Zn Ferrite Nanocrystals as a Passive-Targeted Agent for Magnetically Induced Cancer Theranostics
,”
Biomaterials
,
35
(
33
), pp.
9126
9136
.10.1016/j.biomaterials.2014.07.019
186.
Espinosa
,
A.
,
Di Corato
,
R.
,
Kolosnjaj-Tabi
,
J.
,
Flaud
,
P.
,
Pellegrino
,
T.
, and
Wilhelm
,
C.
,
2016
, “
Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment
,”
ACS Nano
,
10
(
2
), pp.
2436
2446
.10.1021/acsnano.5b07249
187.
Balasubramanian
,
S.
,
Girija
,
A. R.
,
Nagaoka
,
Y.
,
Iwai
,
S.
,
Suzuki
,
M.
,
Kizhikkilot
,
V.
,
Yoshida
,
Y.
,
Maekawa
,
T.
, and
Nair
,
S. D.
,
2014
, “
Curcumin and 5-Fluorouracil-Loaded, Folate- and Transferrin-Decorated Polymeric Magnetic Nanoformulation: A Synergistic Cancer Therapeutic Approach, Accelerated by Magnetic Hyperthermia
,”
Int. J. Nanomed.
,
9
, pp.
437
459
.10.2147/IJN.S49882
188.
Tong
,
S.
,
Quinto
,
C. A.
,
Zhang
,
L.
,
Mohindra
,
P.
, and
Bao
,
G.
,
2017
, “
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles
,”
ACS Nano
,
11
(
7
), pp.
6808
6816
.10.1021/acsnano.7b01762
189.
Ehrlich
,
L. E.
,
Gao
,
Z.
,
Bischof
,
J. C.
, and
Rabin
,
Y.
,
2020
, “
Thermal Conductivity of Cryoprotective Agents Loaded With Nanoparticles, With Application to Recovery of Preserved Tissues and Organs From Cryogenic Storage
,”
PLoS One
,
15
(
9
), p.
e0238941
.10.1371/journal.pone.0238941
190.
Sharma
,
A.
,
Rao
,
J. S.
,
Han
,
Z.
,
Gangwar
,
L.
,
Namsrai
,
B.
,
Gao
,
Z.
,
Ring
,
H. L.
,
2021
, “
Vitrification and Nanowarming of Kidneys
,”
Adv. Sci.
,
8
(
19
), p.
2101691
.10.1002/advs.202101691
191.
Ovejero
,
J. G.
,
Armenia
,
I.
,
Serantes
,
D.
,
Veintemillas-Verdaguer
,
S.
,
Zeballos
,
N.
,
López-Gallego
,
F.
,
Grüttner
,
C.
,
de la Fuente
,
J. M.
,
Puerto Morales
,
M. D.
, and
Grazu
,
V.
,
2021
, “
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation
,”
Nano Lett.
,
21
(
17
), pp.
7213
7220
.10.1021/acs.nanolett.1c02178
192.
Engelmann
,
U. M.
,
Roeth
,
A. A.
,
Eberbeck
,
D.
,
Buhl
,
E. M.
,
Neumann
,
U. P.
,
Schmitz-Rode
,
T.
, and
Slabu
,
I.
,
2018
, “
Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells
,”
Sci. Rep.
,
8
(
1
), p.
13210
.10.1038/s41598-018-31553-9
193.
Wust
,
P.
,
Hildebrandt
,
B.
,
Sreenivasa
,
G.
,
Rau
,
B.
,
Gellermann
,
J.
,
Riess
,
H.
,
Felix
,
R.
, and
Schlag
,
P. M.
,
2002
, “
Hyperthermia in Combined Treatment of Cancer
,”
Lancet Oncol.
,
3
(
8
), pp.
487
497
.10.1016/S1470-2045(02)00818-5
194.
Hildebrandt
,
B.
,
Wust
,
P.
,
Ahlers
,
O.
,
Dieing
,
A.
,
Sreenivasa
,
G.
,
Kerner
,
T.
,
Felix
,
R.
, and
Riess
,
H.
,
2002
, “
The Cellular and Molecular Basis of Hyperthermia
,”
Crit. Rev. Oncol. Hematol.
,
43
(
1
), pp.
33
56
.10.1016/S1040-8428(01)00179-2
195.
Chu
,
M.
,
Shao
,
Y.
,
Peng
,
J.
,
Dai
,
X.
,
Li
,
H.
,
Wu
,
Q.
, and
Shi
,
D.
,
2013
, “
Near-Infrared Laser Light Mediated Cancer Therapy by Photothermal Effect of Fe3O4 Magnetic Nanoparticles
,”
Biomaterials
,
34
(
16
), pp.
4078
4088
.10.1016/j.biomaterials.2013.01.086
196.
Golan
,
R.
,
Bernstein
,
A.
,
Sedrakyan
,
A.
,
Daskivich
,
T. J.
,
Du
,
D. T.
,
Ehdaie
,
B.
,
Fisher
,
B.
,
2018
, “
Development of a Nationally Representative Coordinated Registry Network for Prostate Ablation Technologies
,”
J. Urol.
,
199
(
6
), pp.
1488
1493
.10.1016/j.juro.2017.12.058
197.
Khokhlova
,
V. A.
,
Fowlkes
,
J. B.
,
Roberts
,
W. W.
,
Schade
,
G. R.
,
Xu
,
Z.
,
Khokhlova
,
T. D.
,
Hall
,
T. L.
,
Maxwell
,
A. D.
,
Wang
,
Y. N.
, and
Cain
,
C. A.
,
2015
, “
Histotripsy Methods in Mechanical Disintegration of Tissue: Towards Clinical Applications
,”
Int. J. Hyperthermia
,
31
(
2
), pp.
145
162
.10.3109/02656736.2015.1007538
198.
Meng
,
Y.
,
Hynynen
,
K.
, and
Lipsman
,
N.
,
2021
, “
Applications of Focused Ultrasound in the Brain: From Thermoablation to Drug Delivery
,”
Nat. Rev. Neurol.
,
17
(
1
), pp.
7
22
.10.1038/s41582-020-00418-z
199.
Lang
,
B. H.
,
Woo
,
Y. C.
, and
Chiu
,
K. W.
,
2017
, “
Single-Session High-Intensity Focused Ultrasound Treatment in Large-Sized Benign Thyroid Nodules
,”
Thyroid
,
27
(
5
), pp.
714
721
.10.1089/thy.2016.0664
200.
Lammers
,
T.
,
Kiessling
,
F.
,
Ashford
,
M.
,
Hennink
,
W.
,
Crommelin
,
D.
, and
Storm
,
G.
,
2016
, “
Cancer Nanomedicine: Is Targeting Our Target?
,”
Nat. Rev. Mater.
,
1
(
9
), p.
16069
.10.1038/natrevmats.2016.69
201.
Mu
,
Q.
,
Jiang
,
G.
,
Chen
,
L.
,
Zhou
,
H.
,
Fourches
,
D.
,
Tropsha
,
A.
, and
Yan
,
B.
,
2014
, “
Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems
,”
Chem. Rev.
,
114
(
15
), pp.
7740
7781
.10.1021/cr400295a
202.
Yildirim
,
A.
,
Blum
,
N. T.
, and
Goodwin
,
A. P.
,
2019
, “
Colloids, Nanoparticles, and Materials for Imaging, Delivery, Ablation, and Theranostics by Focused Ultrasound (FUS)
,”
Theranostics
,
9
(
9
), pp.
2572
2594
.10.7150/thno.32424
203.
Attaluri
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2010
, “
Using MicroCT Imaging Technique to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles for Cancer Treatments
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
1
), p.
011003
.10.1115/1.4002225
204.
Gu
,
Q.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2019
, “
Nanoparticle Redistribution in PC3 Tumors Induced by Local Heating in Magnetic Nanoparticle Hyperthermia: In Vivo Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
3
), p.
032402
.10.1115/1.4042298
205.
Khosravi
,
A.
, and
Malekan
,
M.
,
2019
, “
Effect of the Magnetic Field on the Heat Transfer Coefficient of a Fe3O4-Water Ferrofluid Using Artificial Intelligence and CFD Simulation
,”
Eur. Phys. J. Plus
,
134
(
3
), p.
88
.10.1140/epjp/i2019-12477-5
206.
Hamet
,
P.
, and
Tremblay
,
J.
,
2017
, “
Artificial Intelligence in Medicine
,”
Metabolism
,
69S
, pp.
S36
S40
.10.1016/j.metabol.2017.01.011
207.
Adir
,
O.
,
Poley
,
M.
,
Chen
,
G.
,
Froim
,
S.
,
Krinsky
,
N.
,
Shklover
,
J.
,
Shainsky-Roitman
,
J.
,
Lammers
,
T.
, and
Schroeder
,
A.
,
2020
, “
Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine
,”
Adv. Mater.
,
32
(
13
), p.
e1901989
.10.1002/adma.201901989
208.
Wang
,
Y. X.
,
2015
, “
Current Status of Superparamagnetic Iron Oxide Contrast Agents for Liver Magnetic Resonance Imaging
,”
World J. Gastroenterol.
,
21
(
47
), pp.
13400
13402
.10.3748/wjg.v21.i47.13400
209.
Bulte
,
J. W.
,
2009
, “
In Vivo MRI Cell Tracking: Clinical Studies
,”
AJR Am. J. Roentgenol.
,
193
(
2
), pp.
314
325
.10.2214/AJR.09.3107
210.
Luo
,
S.
,
Ma
,
C.
,
Zhu
,
M. Q.
,
Ju
,
W. N.
,
Yang
,
Y.
, and
Wang
,
X.
,
2020
, “
Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer's Disease
,”
Front. Cell. Neurosci.
,
14
, p.
21
.10.3389/fncel.2020.00021
211.
Chung
,
T. H.
,
Hsu
,
S. C.
,
Wu
,
S. H.
,
Hsiao
,
J. K.
,
Lin
,
C. P.
,
Yao
,
M.
, and
Huang
,
D. M.
,
2018
, “
Dextran-Coated Iron Oxide Nanoparticle-Improved Therapeutic Effects of Human Mesenchymal Stem Cells in a Mouse Model of Parkinson's Disease
,”
Nanoscale
,
10
(
6
), pp.
2998
3007
.10.1039/C7NR06976F
You do not currently have access to this content.