Abstract

We investigate the thermal convection in a fluid layer overlying an anisotropic porous medium with Oldroyd-B fluids in the paper. The linear stability analysis and the Chebyshev pseudo-spectral method are used to obtain the numerical results. We found that the neutral curves are bimodal at some depth ratios. The proper values of the permeability ratio and the thermal diffusivity ratio are found to stabilize the stationary convection and the oscillatory convection. Furthermore, the variation of permeability ratio does not affect the bimodal nature of the neutral curves. In addition, the increase in the stress relaxation time has an unstable effect on the oscillatory convection, but the strain retardation time has the opposite effect.

References

1.
Worster
,
M. G.
,
1992
, “
Instabilities of the Liquid and Mushy Regions During Solidification of Alloys
,”
J. Fluid Mech.
,
237
(
1
), pp.
649
669
.10.1017/S0022112092003562
2.
Matthews
,
P. C.
,
1988
, “
A Model for the Onset of Penetrative Convection
,”
J. Fluid Mech.
,
188
, pp.
571
583
.10.1017/S0022112088000850
3.
Ewing
,
R. E.
,
1996
, “
Multidisciplinary Interactions in Energy and Environmental Modeling
,”
Comput. Appl. Math.
,
74
(
1–2
), pp.
193
215
.10.1016/0377-0427(96)00024-6
4.
Chen
,
Q. S.
,
Prasad
,
V.
, and
Chatterjee
,
A.
,
1999
, “
Modeling of Fluid Flow and Heat Transfer in a Hydrothermal Crystal Growth System: Use of Fluid-Superposed Porous Layer Theory
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
1049
1058
.10.1115/1.2826055
5.
Chen
,
F.
, and
Chen
,
C. F.
,
1988
, “
Onset of Finger Convection in a Horizontal Porous Layer Underlying a Fluid Layer
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
403
409
.10.1115/1.3250499
6.
Straughan
,
B.
,
2002
, “
Effect of Property Variation and Modelling on Convection in a Fluid Overlying a Porous Layer
,”
Int. J. Numer. Anal. Methods Geomech.
,
26
(
1
), pp.
75
97
.10.1002/nag.193
7.
Bagchi
,
A.
, and
Kulacki
,
F. A.
,
2011
, “
Natural Convection in Fluid-Superposed Porous Layers Heated Locally From Below
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3672
3682
.10.1016/j.ijheatmasstransfer.2011.01.034
8.
Kolchanova
,
E.
, and
Kolchanov
,
N.
,
2017
, “
Vibration Effect on the Onset of Thermal Convection in an Inhomogeneous Porous Layer Underlying a Fluid Layer
,”
Int. J. Heat Mass Transfer
,
106
, pp.
47
60
.10.1016/j.ijheatmasstransfer.2016.10.062
9.
Kolchanova
,
E. A.
,
2020
, “
Two Modes of Vibrational Double-Diffusive Instability in a Superposed Fluid–Porous Layer Heated From Below: The Effect of Buoyancy Ratio
,”
Transp. Porous Media
,
134
(
2
), pp.
453
469
.10.1007/s11242-020-01454-5
10.
Tsiberkin
,
K.
,
2020
, “
Porosity Effect on the Linear Stability of Flow Overlying a Porous Medium
,”
Eur. Phys. J. E
,
43
(
6
), p.
34
.10.1140/epje/i2020-11959-6
11.
Le Reun
,
T.
, and
Hewitt
,
D. R.
,
2021
, “
High-Rayleigh-Number Convection in Porous–Fluid Layers
,”
J. Fluid Mech.
,
920
, p.
A35
.10.1017/jfm.2021.449
12.
Kolchanova
,
E.
, and
Kolchanov
,
N.
,
2022
, “
The Effect of Translational Vibration With Different Direction on Thermosolutal Convection Onset in a Superposed Fluid and Porous Layers Under Gravity
,”
Microgravity Sci. Tech.
,
34
(
3
), p.
40
.10.1007/s12217-022-09964-1
13.
Tan
,
W. C.
, and
Masuoka
,
T.
,
2007
, “
Stability Analysis of a Maxwell Fluid in a Porous Medium Heated From Below
,”
Phys. Lett. A
,
360
(
3
), pp.
454
460
.10.1016/j.physleta.2006.08.054
14.
Malashetty
,
M. S.
, and
Kulkarni
,
S.
,
2009
, “
The Convective Instability of Maxwell Fluid-Saturated Porous Layer Using a Thermal Non-Equilibrium Model
,”
J. Non-Newtonian Fluid Mech.
,
162
(
1–3
), pp.
29
37
.10.1016/j.jnnfm.2009.05.003
15.
Sun
,
Q. L.
,
Wang
,
S. W.
,
Zhao
,
M. L.
,
Yin
,
C.
, and
Zhang
,
Q. Y.
,
2019
, “
Weak Nonlinear Analysis of Darcy-Brinkman Convection in Oldroyd-B Fluid Saturated Porous Media Under Temperature Modulation
,”
Int. J. Heat Mass Transfer
,
138
, pp.
244
256
.10.1016/j.ijheatmasstransfer.2019.04.058
16.
Roy
,
K.
,
Ponalagusamy
,
R.
, and
Murthy
,
P. V. S. N.
,
2020
, “
The Effects of Double-Diffusion and Viscous Dissipation on the Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Layer
,”
Phys. Fluids
,
32
(
9
), p.
094108
.10.1063/5.0020076
17.
Kenath
,
A.
,
Soibam
,
D.
, and
Khanum
,
S.
,
2020
, “
Linear and Nonlinear Study of Rayleigh–Bénard Convection in Oldroyd-B Fluids Under Rotational Modulation
,”
Int. J. Fluid Mech. Res.
,
47
(
5
), pp.
387
397
.10.1615/InterJFluidMechRes.2020035209
18.
Su
,
Z. G.
,
Li
,
T. F.
,
Luo
,
K.
,
Wu
,
J.
, and
Yi
,
H. L.
,
2021
, “
Electro-Thermo-Convection in Non-Newtonian Power-Law Fluids Within Rectangular Enclosures
,”
J. Non-Newtonian Fluid Mech.
,
288
, p.
104470
.10.1016/j.jnnfm.2020.104470
19.
He
,
D. D.
, and
Wylie
,
J. J.
,
2021
, “
Temporal Instability of a Viscoelastic Liquid Thread Surrounded by Another Viscoelastic Fluid in Presence of Insoluble Surfactant and Inertia
,”
J. Non-Newtonian Fluid Mech.
,
288
, p.
104468
.10.1016/j.jnnfm.2020.104468
20.
Yin
,
C.
,
Fu
,
C. J.
, and
Tan
,
W. C.
,
2013
, “
Stability of Thermal Convection in a Fluid–Porous System Saturated With an Oldroyd-B Fluid Heated From Below
,”
Transp. Porous Media
,
99
(
2
), pp.
327
347
.10.1007/s11242-013-0188-0
21.
Yin
,
C.
,
Niu
,
J.
,
Fu
,
C. J.
, and
Tan
,
W. C.
,
2013
, “
Thermal Convection of a Viscoelastic Fluid in a Fluid–Porous System Subjected to a Horizontal Plane Couette Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
711
718
.10.1016/j.ijheatfluidflow.2013.10.002
22.
Yin
,
C.
,
Wang
,
C. W.
, and
Wang
,
S. W.
,
2020
, “
Thermal Instability of a Viscoelastic Fluid in a Fluid–Porous System With a Plane Poiseuille Flow
,”
Appl. Math. Mech.
,
41
(
11
), pp.
1631
1650
.10.1007/s10483-020-2663-7
23.
Mckibbin
,
R.
, and
O'Sullivan
,
M. J.
,
1980
, “
Onset of Convection in a Layered Porous Medium Heated From Below
,”
J. Fluid Mech.
,
96
(
2
), pp.
375
393
.10.1017/S0022112080002170
24.
McKibbin
,
R.
, and
O'Sullivan
,
M. J.
,
1981
, “
Heat Transfer in a Layered Porous Medium Heated From Below
,”
J. Fluid Mech.
,
111
(
1
), pp.
141
173
.10.1017/S0022112081002334
25.
Rees
,
D. A. S.
, and
Riley
,
D. S.
,
1989
, “
The Effects of Boundary Imperfections on Convection in a Saturated Porous Layer: Near-Resonant Wavelength Excitation
,”
J. Fluid Mech.
,
199
, pp.
133
154
.10.1017/S0022112089000327
26.
Rees
,
D. A. S.
, and
Riley
,
D. S.
,
1990
, “
The Three-Dimensional Stability of Finite-Amplitude Convection in a Layered Porous Medium Heated From Below
,”
J. Fluid Mech.
,
211
, pp.
437
461
.10.1017/S0022112090001641
27.
Chen
,
F. L.
, and
Hsu
,
L. H.
,
1991
, “
Onset of Thermal Convection in an Anisotropic and Inhomogeneous Porous Layer Underlying a Fluid Layer
,”
J. Appl. Phys.
,
69
(
9
), pp.
6289
6301
.10.1063/1.348827
28.
Storesletten
,
L.
,
1993
, “
Natural Convection in a Horizontal Porous Layer With Anisotropic Thermal Diffusivity
,”
Transp. Porous Media
,
12
(
1
), pp.
19
29
.10.1007/BF00616359
29.
Rees
,
D. A. S.
, and
Storesletten
,
L.
,
1995
, “
The Effect of Anisotropic Permeability on Free Convective Boundary Layer Flow in Porous Media
,”
Transp. Porous Media
,
19
(
1
), pp.
79
92
.10.1007/BF00716050
30.
Malashetty
,
M. S.
,
Tan
,
W.
, and
Swamy
,
M.
,
2009
, “
The Onset of Double Diffusive Convection in a Binary Viscoelastic Fluid Saturated Anisotropic Porous Layer
,”
Phys. Fluids
,
21
(
8
), p.
084101
.10.1063/1.3194288
31.
Shivakumara
,
I. S.
,
Lee
,
J.
, and
Chavaraddi
,
K. B.
,
2011
, “
Onset of Surface Tension Driven Convection in a Fluid Layer Overlying a Layer of an Anisotropic Porous Medium
,”
Int. J. Heat Mass Transfer.
,
54
(
4
), pp.
994
1001
.10.1016/j.ijheatmasstransfer.2010.10.023
32.
Raghunatha
,
K. R.
, and
Shivakumara
,
I. S.
,
2018
, “
Stability of Buoyancy-Driven Convection in an Oldroyd-B Fluid-Saturated Anisotropic Porous Layer
,”
Appl. Math. Mech.
,
39
(
5
), pp.
653
666
.10.1007/s10483-018-2329-6
33.
Hema
,
M.
,
Shivakumara
,
I. S.
, and
Ravisha
,
M.
,
2021
, “
Cattaneo-LTNE Effects on the Stability of Brinkman Convection in an Anisotropic Porous Layer
,”
Int. J. Appl. Comput. Math.
,
7
(
2
), p.
38
.10.1007/s40819-021-00954-2
34.
Barletta
,
A.
, and
Celli
,
M.
,
2021
, “
Anisotropy and the Onset of the Thermoconvective Instability in a Vertical Porous Layer
,”
ASME J. Heat Transfer
,
143
(
10
), p.
102601
.10.1115/1.4051322
35.
Hemanthkumar
,
C.
,
Raghunatha
,
K. R.
, and
Shivakumara
,
I. S.
,
2020
, “
Nonlinear Convection in an Elasticoviscous Fluid-Saturated Anisotropic Porous Layer Using a Local Thermal Nonequilibrium Model
,”
Heat Transfer
,
49
(
4
), pp.
1691
1712
.10.1002/htj.21686
36.
Kumar
,
C.
,
Shivakumara
,
I. S.
,
Shankar
,
B. M.
, and
Pallavi
,
G.
,
2021
, “
Exploration of Anisotropy on Nonlinear Stability of Thermohaline Viscoelastic Porous Convection
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105427
.10.1016/j.icheatmasstransfer.2021.105427
37.
Kumar
,
C. H.
,
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2022
, “
Weakly Nonlinear Stability of Thermosolutal Convection in an Oldroyd-B Fluid-Saturated Anisotropic Porous Layer Using a Local Thermal Nonequilibrium Model
,”
ASME J. Heat Transfer
,
144
(
7
), p.
072701
.10.1115/1.4054123
38.
Jones
,
I. P.
,
1973
, “
Low Reynolds Number Flow Past a Porous Spherical Shell
,”
Math. Proc. Camb. Philos. Soc.
,
73
(
1
), pp.
231
238
.10.1017/S0305004100047642
You do not currently have access to this content.