Abstract

This investigation is devoted to analyze the buoyancy-driven flow behavior and associated thermal dissipation rate in a nanofluid-filled annular region with five different single source-sink and three different dual source-sink arrangements along the vertical surfaces. The remaining region on the vertical boundaries and horizontal surfaces are kept adiabatic. Numerical simulations have been performed by employing the finite difference method. To analyze the impacts of different nanofluids, nanoparticle volume fraction, Rayleigh number, size, and arrangement of sources and sinks, the results are graphically represented through streamline and isotherm contours, thermal profiles, average Nusselt number, and cup-mixing temperature. The results showed that identifying an optimum location and length of source-sink with a proper selection of other control parameters can lead to enhanced thermal transport and thermal mixing in the enclosure. In particular, middle-middle thermally active location and placing source-sink separately on the vertical walls lead to the production of maximum heat transport compared to other single and dual source-sink arrangements, respectively. Also, among the two nanofluids considered in the current investigation, larger enhancement in thermal transport has been achieved for Cu-water nanofluid. The calculated enhancement ratio of the heat dissipation rate enhances with an increment in nanoparticle concentration.

References

1.
Davis
,
G. D. V.
, and
Thomas
,
R.
,
1969
, “
Natural Convection Between Concentric Vertical Cylinders
,”
Phys. Fluids
,
12
(
12
), p.
II-198
.10.1063/1.1692437
2.
Keyhani
,
M.
,
Kulacki
,
F.
, and
Christensen
,
R.
,
1983
, “
Free Convection in a Vertical Annulus With Constant Heat Flux on the Inner Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
3
), pp.
454
459
.10.1115/1.3245606
3.
Khan
,
J.
, and
Kumar
,
R.
,
1989
, “
Natural Convection in Vertical Annuli: A Numerical Study for Constant Heat Flux on the Inner Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
4
), pp.
909
915
.10.1115/1.3250805
4.
Dhif
,
K.
,
Mebarek-Oudina
,
F.
,
Chouf
,
S.
,
Vaidya
,
H.
, and
Chamkha
,
A. J.
,
2021
, “
Thermal Analysis of the Solar Collector Cum Storage System Using a Hybrid-Nanofluids
,”
J. Nanofluids
,
10
(
4
), pp.
616
626
.10.1166/jon.2021.1807
5.
Mebarek Oudina
,
F.
, and
Chabani
,
I.
,
2022
, “
Review on Nano-Fluids Applications and Heat Transfer Enhancement Techniques in Different Enclosures
,”
J. Nanofluids
,
11
(
2
), pp.
155
168
.10.1166/jon.2022.1834
6.
Salem
,
T. K.
,
Nazzal
,
I. T.
,
Arik
,
M.
, and
Budakli
,
M.
,
2019
, “
Impact of Functional Nanofluid Coolant on Radiator Performance
,”
J. Therm. Sci. Eng. Appl.
,
11
(
4
), p. 041020.10.1115/1.4044271
7.
Abouali
,
O.
, and
Falahatpisheh
,
A.
,
2009
, “
Numerical Investigation of Natural Convection of al2o3 Nanofluid in Vertical Annuli
,”
Heat Mass Transfer
,
46
(
1
), pp.
15
23
.10.1007/s00231-009-0540-7
8.
Rubinov
,
A.
,
Erenburg
,
V.
,
Gelfgat
,
A. Y.
,
Kit
,
E.
,
Bar-Yoseph
,
P.
, and
Solan
,
A.
,
2004
, “
Three-Dimensional Instabilities of Natural Convection Flow in a Vertical Cylinder With Partially Heated Sidewall
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
4
), pp.
586
599
.10.1115/1.1773588
9.
Sankar
,
M.
, and
Do
,
Y.
,
2010
, “
Numerical Simulation of Free Convection Heat Transfer in a Vertical Annular Cavity With Discrete Heating
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
600
606
.10.1016/j.icheatmasstransfer.2010.02.009
10.
Sankar
,
M.
,
Park
,
J.
, and
Do
,
Y.
,
2011
, “
Natural Convection in a Vertical Annuli With Discrete Heat Sources
,”
Numer. Heat Transfer, Part A: Appl.
,
59
(
8
), pp.
594
615
.10.1080/10407782.2011.561110
11.
Sankar
,
M.
,
Park
,
Y.
,
Lopez
,
J.
, and
Do
,
Y.
,
2011
, “
Numerical Study of Natural Convection in a Vertical Porous Annulus With Discrete Heating
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1493
1505
.10.1016/j.ijheatmasstransfer.2010.11.043
12.
Mebarek-Oudina
,
F.
,
2017
, “
Numerical Modeling of the Hydrodynamic Stability in Vertical Annulus With Heat Source of Different Lengths
,”
Eng. Sci. Tech., Int. J.
,
20
(
4
), pp.
1324
1333
.10.1016/j.jestch.2017.08.003
13.
Mebarek-Oudina
,
F.
,
2019
, “
Convective Heat Transfer of Titania Nanofluids of Different Base Fluids in Cylindrical Annulus With Discrete Heat Source
,”
Heat Transfer–Asian Res.
,
48
(
1
), pp.
135
147
.10.1002/htj.21375
14.
Sankar
,
M.
,
Reddy
,
N. K.
, and
Do
,
Y.
,
2021
, “
Conjugate Buoyant Convective Transport of Nanofluids in an Enclosed Annular Geometry
,”
Sci. Rep.
,
11
(
1
), pp.
1
22
.10.1038/s41598-021-96456-8
15.
Reddy
,
N. K.
,
Swamy
,
H. A. K
, and
Sankar
,
M.
,
2021
, “
Buoyant Convective Flow of Different Hybrid Nanoliquids in a Non-Uniformly Heated Annulus
,”
Eur. Phys. J. Spec. Top.
,
230
(
5
), pp.
1213
1225
.10.1140/epjs/s11734-021-00034-y
16.
Swamy
,
H. A. K.
,
Sankar
,
M.
,
Reddy
,
N. K.
, and
Al Manthari
,
M.
,
2022
, “
Double Diffusive Convective Transport and Entropy Generation in an Annular Space Filled With Alumina-Water Nanoliquid
,”
Eur. Phys. J. Spec. Top.
, epub
.10.1140/epjs/s11734-022-00591-w
17.
Kemparaju
,
S.
,
Swamy
,
H. A. K.
,
Sankar
,
M.
, and
Mebarek-Oudina
,
F.
,
2022
, “
Impact of Thermal and Solute Source-Sink Combination on Thermosolutal Convection in a Partially Active Porous Annulus
,”
Phys. Scr.
,
97
(
5
), p.
055206
.10.1088/1402-4896/ac6383
18.
Pushpa
,
B.
,
Sankar
,
M.
, and
Mebarek-Oudina
,
F.
,
2021
, “
Buoyant Convective Flow and Heat Dissipation of cu–h2o Nanoliquids in an Annulus Through a Thin Baffle
,”
J. Nanofluids
,
10
(
2
), pp.
292
304
.10.1166/jon.2021.1782
19.
Kuhn
,
D.
, and
Oosthuizen
,
P.
,
1987
, “
Unsteady Natural Convection in a Partially Heated Rectangular Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
3
), pp.
798
801
.10.1115/1.3248163
20.
Chadwick
,
M.
,
Webb
,
B.
, and
Heaton
,
H.
,
1991
, “
Natural Convection From Two-Dimensional Discrete Heat Sources in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
7
), pp.
1679
1693
.10.1016/0017-9310(91)90145-5
21.
Nardini
,
G.
,
Paroncini
,
M.
, and
Vitali
,
R.
,
2016
, “
An Experimental and Numerical Analysis of Natural Convective Heat Transfer in a Square Cavity With Five Discrete Heat Sources
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
122502
.10.1115/1.4034160
22.
Valencia
,
A.
, and
Frederick
,
R. L.
,
1989
, “
Heat Transfer in Square Cavities With Partially Active Vertical Walls
,”
Int. J. Heat Mass Transfer
,
32
(
8
), pp.
1567
1574
.10.1016/0017-9310(89)90078-1
23.
Ho
,
C.
, and
Chang
,
J.
,
1994
, “
A Study of Natural Convection Heat Transfer in a Vertical Rectangular Enclosure With Two- Dimensional Discrete Heating: Effect of Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
917
925
.10.1016/0017-9310(94)90217-8
24.
Ridouane
,
E. H.
, and
Hasnaoui
,
M.
,
2006
, “
Effect of Surface Radiation on Multiple Natural Convection Solutions in a Square Cavity Partially Heated From Below
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
10
), pp.
1012
1021
.10.1115/1.2345429
25.
Farah
,
Z.
, and
Sabeur
,
A.
, “
CFD-Based Analysis of Entropy Generation on Laminar Natural Convection in Enclosures With Partitioned Walls and for Different Heating Positions
,”
ASME J. Heat Transfer-Trans. ASME
, 144(6), p.
062601
.10.1115/1.4053938
26.
Deng
,
Q.-H.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Natural Convection in Square Cavities Due to Discrete Source–Sink Pairs
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5949
5957
.10.1016/j.ijheatmasstransfer.2008.04.062
27.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
28.
Ogut
,
2009
, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2063
2073
.10.1016/j.ijthermalsci.2009.03.014
29.
Das
,
M. K.
, and
Ohal
,
P. S.
,
2009
, “
Natural Convection Heat Transfer Augmentation in a Partially Heated and Partially Cooled Square Cavity Utilizing Nanofluids
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
3/4
), pp.
411
431
.10.1108/09615530910938353
30.
Corcione
,
M.
, and
Habib
,
E.
,
2010
, “
Buoyant Heat Transport in Fluids Across Tilted Square Cavities Discretely Heated at One Side
,”
Int. J. Therm. Sci.
,
49
(
5
), pp.
797
808
.10.1016/j.ijthermalsci.2009.11.012
31.
Sheyhzadeh
,
G. H. A.
,
Babaei
,
M.
,
Rahmani
,
V.
, and
Mehrabian
,
M.
, “
The Effects of an Imposed Magnetic Field on Natural Convection in a Tilted Cavity With Partially Active Vertical Walls: Numerical Approach
,”
IJE Trans. A: Basics
, 23(1), pp.
65
78
.
32.
Kheirkhah
,
M. H.
,
Arefmanesh
,
A.
,
Sheikhzadeh
,
G. A.
, and
Abdollahi
,
R.
,
2011
, “
Numerical Study of Natural Convection in an Inclined Cavity With Partially Active Side Walls Filled With cu-Water Nanofluid
,”
Int. J. Eng.
,
24
(
3
), pp.
279
292
.10.5829/idosi.ije.2011.24.03b.08
33.
Sheikhzadeh
,
G.
,
Arefmanesh
,
A.
,
Kheirkhah
,
M.
, and
Abdollahi
,
R.
,
2011
, “
Natural Convection of cu–Water Nanofluid in a Cavity With Partially Active Side Walls
,”
Eur. J. Mech.-B/Fluids
,
30
(
2
), pp.
166
176
.10.1016/j.euromechflu.2010.10.003
34.
Sivasankaran
,
S.
, and
Bhuvaneswari
,
M.
,
2011
, “
Effect of Thermally Active Zones and Direction of Magnetic Field on Hydromagnetic Convection in an Enclosure
,”
Therm. Sci.
,
15
(
suppl. 2
), pp.
367
382
.10.2298/TSCI100221094S
35.
Alam
,
P.
,
Kumar
,
A.
,
Kapoor
,
S.
, and
Ansari
,
S.
,
2012
, “
Numerical Investigation of Natural Convection in a Rectangular Enclosure Due to Partial Heating and Cooling at Vertical Walls
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
6
), pp.
2403
2414
.10.1016/j.cnsns.2011.09.004
36.
Malik
,
S.
, and
Nayak
,
A. K.
,
2017
, “
Mhd Convection and Entropy Generation of Nanofluid in a Porous Enclosure With Sinusoidal Heating
,”
Int. J. Heat Mass Transfer
,
111
, pp.
329
345
.10.1016/j.ijheatmasstransfer.2017.03.123
37.
Rashad
,
A.
,
Armaghani
,
T.
,
Chamkha
,
A. J.
, and
Mansour
,
M.
,
2018
, “
Entropy Generation and Mhd Natural Convection of a Nanofluid in an Inclined Square Porous Cavity: Effects of a Heat Sink and Source Size and Location
,”
Chin. J. Phy.
,
56
(
1
), pp.
193
211
.10.1016/j.cjph.2017.11.026
38.
Aminossadati
,
S.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech.-B/Fluids
,
28
(
5
), pp.
630
640
.10.1016/j.euromechflu.2009.05.006
39.
Bhuiyana
,
A.
,
Alam
,
M. S.
, and
Alim
,
M.
,
2017
, “
Natural Convection of Water-Based Nanofluids in a Square Cavity With Partially Heated of the Bottom Wall
,”
Proc. Eng.
,
194
, pp.
435
441
.10.1016/j.proeng.2017.08.168
40.
Mohammadtabar
,
M.
,
Mohammadtabar
,
F.
,
Shokri
,
R.
, and
Sadrzadeh
,
M.
,
2017
, “
Numerical Investigation of the Entropy Generation Due to Natural Convection in a Partially Heated Square Cavity Filled With Nanofluids
,”
Heat Transfer Eng.
,
38
(
17
), pp.
1506
1521
.10.1080/01457632.2016.1255092
41.
Astanina
,
M.
,
Abu-Nada
,
E.
, and
Sheremet
,
M.
,
2018
, “
Combined Effects of Thermophoresis, Brownian Motion, and Nanofluid Variable Properties on Cuo-Water Nanofluid Natural Convection in a Partially Heated Square Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
8
), p.
082401
.10.1115/1.4039217
42.
Mendu
,
S. S.
, and
Das
,
P. K.
,
2021
, “
Lattice Boltzmann Modeling for Natural Convection in Power-Law Fluids Within a Partially Heated Square Enclosure
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
032601
.10.1115/1.4049472
43.
Esmaeil
,
K. K.
,
Sultan
,
G. I.
,
Al-Mufadi
,
F. A.
, and
Almasri
,
R. A.
,
2019
, “
Experimental Heat Transfer From Heating Source Subjected to Rigorous Natural Convection Inside Enclosure and Cooled by Forced Nanofluid Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
7
), p.
072501
.10.1115/1.4043673
44.
Kaluri
,
R. S.
,
Basak
,
T.
, and
Roy
,
S.
,
2010
, “
Heatline Approach for Visualization of Heat Flow and Efficient Thermal Mixing With Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3241
3261
.10.1016/j.ijheatmasstransfer.2010.03.002
45.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Role of Entropy Generation on Thermal Management During Natural Convection in Porous Square Cavities With Distributed Heat Sources
,”
Chem. Eng. Sci.
,
66
(
10
), pp.
2124
2140
.10.1016/j.ces.2011.02.009
46.
Das
,
D.
, and
Basak
,
T.
,
2016
, “
Role of Distributed/Discrete Solar Heaters During Natural Convection in the Square and Triangular Cavities: Cfd and Heatline Simulations
,”
Sol. Energy
,
135
, pp.
130
153
.10.1016/j.solener.2016.04.045
47.
Das
,
D.
,
Lukose
,
L.
, and
Basak
,
T.
,
2019
, “
Analysis of Efficiency of Convection in Porous Geometries (Square vs Triangular) With Multiple Discrete Heaters on Walls: A Heatline Perspective
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
9
), pp.
3305
3346
.10.1108/HFF-11-2018-0675
48.
Rashad
,
A.
,
Chamkha
,
A. J.
,
Ismael
,
M. A.
, and
Salah
,
T.
,
2018
, “
Magnetohydrodynamics Natural Convection in a Triangular Cavity Filled With a Cu-Al2O3/Water Hybrid Nanofluid With Localized Heating From Below and Internal Heat Generation
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
7
), p.
072502
.10.1115/1.4039213
49.
Gowda
,
K. G. B. M.
,
Rajagopal
,
M. S.
, and
Seethramu
,
K. N.
,
2020
, “
Numerical Studies on Natural Convection in a Trapezoidal Enclosure With Discrete Heating
,”
Heat Transfer Eng.
,
41
(
6–7
), pp.
595
606
.10.1080/01457632.2018.1546948
50.
Abu-Nada
,
E.
, and
Oztop
,
H. F.
,
2009
, “
Effects of Inclination Angle on Natural Convection in Enclosures Filled With cu–Water Nanofluid
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
669
678
.10.1016/j.ijheatfluidflow.2009.02.001
51.
Sheikholeslami
,
M.
,
Ellahi
,
R.
,
Hassan
,
M.
, and
Soleimani
,
S.
,
2014
, “
A Study of Natural Convection Heat Transfer in a Nanofluid Filled Enclosure With Elliptic Inner Cylinder
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
8
), pp.
1906
1927
.10.1108/HFF-07-2013-0225
You do not currently have access to this content.