Abstract

Two-dimensional (2D) numerical experiments are performed to investigate the flow instabilities and mixing of different nonisothermal counterflowing jets in a passive-mixer. The fluid is modeled as a binary mixture with thermal and solutal buoyancy effects considered through the Boussinesq approximation. The streams are arranged in a thermal and solutal buoyancy aiding configuration. Computations are carried out for three different ratios of the upper jet bulk velocity to the lower jet bulk velocity (VR), namely, VR = 0.5, 1.0, and 2. Within the parametric domain of RiT and RiC defined by region (RiT + RiC) ≤ 3, the instability causing transition from steady to unsteady flow regime is observed for VR = 1 and 2, while no transition is found to occur at VR = 0.5. Using Landau theory, it is established that the transition from steady to unsteady flow regime is a supercritical Hopf bifurcation. A complete regime map identifying the steady and unsteady flow regimes, within the parametric space of this study, is obtained by plotting the neutral curves of RiC and RiT (obtained using Landau theory) for different values of VR. Proper orthogonal decomposition (POD) analysis of the unsteady flows at VR = 1 establishes the presence of standing waves. However, for VR = 2, the presence of degenerate pairs in the POD eigenspectrum ascertains the presence of traveling waves in the unsteady flows. The standing wave unsteady flow mode is found to yield the highest rate of mixing.

References

1.
Tamir
,
A.
,
1994
,
Impinging Stream Reactors: Fundamentals and Applications
(Transport Processes in Engineering, Vol.
7
),
Elsevier
, Amsterdam,
The Netherlands
.
2.
Coppola
,
G.
, and
Gomez
,
A.
,
2010
, “
Experimental Study of Highly Turbulent Isothermal Opposed-Jet Flows
,”
Phys. Fluids
,
22
(
10
), p.
105101
.10.1063/1.3484253
3.
Pawlowski
,
R. P.
,
Salinger
,
A. G.
,
Shadid
,
J. N.
, and
Mountziaris
,
T. J.
,
2006
, “
Bifurcation and Stability Analysis of Laminar Isothermal Counter-Flowing Jets
,”
J. Fluid Mech.
,
551
(
1
), pp.
117
139
.10.1017/S0022112005008396
4.
Bertrand
,
M.
,
Lamarque
,
N.
,
Lebaigue
,
O.
,
Plasari
,
E.
, and
Ducros
,
F.
,
2016
, “
Micromixing Characterization in Rapid Mixing Devices by Chemical Methods and LES Modelling
,”
Chem. Eng. J.
,
283
, pp.
462
475
.10.1016/j.cej.2015.07.022
5.
Liu
,
S.
,
Wang
,
B.
,
Wan
,
Z.
,
Ma
,
D.
, and
Sun
,
D.
,
2016
, “
Bifurcation Analysis of Laminar Isothermal Planar Opposed-Jet Flow
,”
Comput. Fluids
,
140
, pp.
72
80
.10.1016/j.compfluid.2016.09.007
6.
Ansari
,
A.
,
Chen
,
K. K.
,
Burrell
,
R. R.
, and
Egolfopoulos
,
F. N.
,
2018
, “
Effects of Confinement, Geometry, Inlet Velocity Profile, and Reynolds Number on the Asymmetry of Opposed-Jet Flows
,”
Theor. Comput. Fluid Dyn.
,
32
(
3
), pp.
349
369
.10.1007/s00162-018-0457-1
7.
Hasan
,
N.
, and
Khan
,
S. A.
,
2011
, “
Two-Dimensional Interactions of Non-Isothermal Counter-Flowing Streams in an Adiabatic Channel With Aiding and Opposing Buoyancy
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1150
1167
.10.1016/j.ijheatmasstransfer.2010.11.006
8.
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A. S.
,
1997
, “
Flow and Thermal Characteristics of Steady Two Dimensional Confined Laminar Opposing Jets: Part I. Equal Jets
,”
Int. Commun. Heat Mass Transfer
,
24
(
1
), pp.
27
38
.10.1016/S0735-1933(96)00103-0
9.
Wang
,
S. J.
,
Devahastin
,
S.
, and
Mujumdar
,
A. S.
,
2005
, “
A Numerical Investigation of Some Approaches to Improve Mixing in Laminar Confined Impinging Streams
,”
Appl. Therm. Eng.
,
25
(
2–3
), pp.
253
269
.10.1016/j.applthermaleng.2004.06.015
10.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
, 2nd ed.,
Cambridge University Press
, Cambridge,
UK
.
11.
Hasan
,
N.
, and
Ali
,
R.
,
2013
, “
Vortex-Shedding Suppression in Two-Dimensional Mixed Convective Flows Past Circular and Square Cylinders
,”
Phys. Fluids
,
25
(
5
), p.
053603
.10.1063/1.4804387
12.
Maxworthy
,
T.
,
1980
, “
On the Formation of Non-Linear Internal Waves From the Gravitational Collapse of Mixed Regions in Two and Three Dimensions
,”
J. Fluid Mech.
,
96
(
1
), pp.
47
64
.10.1017/S0022112080002017
13.
Aubry
,
N.
,
Guyonnet
,
R.
, and
Lima
,
R.
,
1992
, “
Spatio-Temporal Symmetries and Bifurcations Via Bi-Orthogonal Decompositions
,”
J. Non-Linear Sci.
,
2
(
2
), pp.
183
215
.10.1007/BF02429855
14.
Podvin
,
B.
, and
Le Quéré
,
P.
,
2001
, “
Low-Order Models for the Flow in a Differentially Heated Cavity
,”
Phys. Fluids
,
13
(
11
), pp.
3204
3214
.10.1063/1.1408919
15.
Rempfer
,
D.
, and
Fasel
,
H.
,
1994
, “
Evolution of Three-Dimensional Coherent Structures in a Flat Plate Boundary Layer
,”
J. Fluid Mech.
,
260
, pp.
351
375
.10.1017/S0022112094003551
16.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
,
1988
, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
192
, pp.
115
173
.10.1017/S0022112088001818
You do not currently have access to this content.