Abstract

Two-phase flow in parallel heated channels is prone to symmetry breakdown resulting in mass flow maldistribution. Moreover, in the presence of compressible volume (CV), such systems also undergo pressure drop oscillations (PDOs). The performances of such systems depend on the effect of these flow instabilities. However, the simultaneous occurrence of these two-phenomena has been rarely reported in the literature. In this work, an approach is applied in a two-channel system to demarcate the parameter space of mass flow rate and inlet temperature into several areas, where these two phenomena take place. The loss in the symmetry in the flow rate is observed as the mass flow rate is varied, which leads to flow maldistribution. The PDO are also observed for specific values of mass flow rate in the system. One unique feature of the parallel channel system is the existence of the oscillatory and stable (albeit asymmetric) states at the same parameter values. For these parameter values, the final state of the system is dependent on the type of initial disturbance. The flow maldistribution due to symmetry breakdown is identified by the pitchfork bifurcation, and oscillations of mass flow rate are identified by the presence of Hopf bifurcation. Moreover, the physical interpretation of the different phenomena in the system is carried out using internal and external pressure drop characteristics curves.

References

1.
Schlichting
,
W. R.
,
Lahey
,
R. T.
, and
Podowski
,
M. Z.
,
2010
, “
An Analysis of Interacting Instability Modes, in a Phase Change System
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3178
3201
.10.1016/j.nucengdes.2010.05.057
2.
Manavela Chiapero
,
E.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2012
, “
Review on Pressure Drop Oscillations in Boiling Systems
,”
Nucl. Eng. Des.
,
250
, pp.
436
447
.10.1016/j.nucengdes.2012.04.012
3.
Kakac
,
S.
, and
Bon
,
B.
,
2008
, “
A Review of Two-Phase Flow Dynamic Instabilities in Tube Boiling Systems
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
399
433
.10.1016/j.ijheatmasstransfer.2007.09.026
4.
Kuang
,
Y.
,
Wang
,
W.
,
Miao
,
J.
,
Yu
,
X.
, and
Zhang
,
H.
,
2020
, “
Pressure Drop Instability Analysis in Mini-Channel Evaporators Under Different Magnitudes of Gravity
,”
Int. J. Therm. Sci.
,
147
, p.
105952
.10.1016/j.ijthermalsci.2019.05.008
5.
Yang
,
K.
,
Zhang
,
A.
, and
Wang
,
J.
,
2018
, “
On the Ledinegg Instability in Parallel Channels: A New and Exact Criterion
,”
Int. J. Therm. Sci.
,
129
, pp.
193
200
.10.1016/j.ijthermalsci.2018.01.032
6.
Chiapero
,
E. M.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2013
, “
Numerical Analysis of Pressure Drop Oscillations in Parallel Channels
,”
Int. J. Multiph. Flow
,
56
, pp.
15
24
.10.1016/j.ijmultiphaseflow.2013.05.010
7.
Padki
,
M. M.
,
Palmer
,
K.
,
Kakaç
,
S.
, and
Veziroělu
,
T. N.
,
1992
, “
Bifurcation Analysis of Pressure-Drop Oscillations and the Ledinegg Instability
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
525
532
.10.1016/0017-9310(92)90287-3
8.
Yan
,
B. H.
,
Li
,
R.
, and
Wang
,
L.
,
2017
, “
The Analysis of Density Wave Oscillation in Ocean Motions With a Density Variant Drift-Flux Model
,”
Int. J. Heat Mass Transfer
,
115
, pp.
138
147
.10.1016/j.ijheatmasstransfer.2017.08.022
9.
Paul
,
S.
, and
Singh
,
S.
,
2017
, “
On Nonlinear Dynamics of Density Wave Oscillations in a Channel With Non-Uniform Axial Heating
,”
Int. J. Therm. Sci.
,
116
, pp.
172
198
.10.1016/j.ijthermalsci.2017.02.008
10.
Paul
,
S.
, and
Singh
,
S.
,
2017
, “
Analysis of Local Bifurcations in a Channel Subjected to Non-Uniform Axial Heating
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2143
2157
.10.1016/j.ijheatmasstransfer.2017.01.060
11.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
,
2009
, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.10.1016/j.ijheatmasstransfer.2009.09.008
12.
Saikia
,
K.
,
Pandey
,
M.
, and
Basu
,
D. N.
,
2019
, “
Numerical Investigation of the Effect of Inlet Subcooling on Flow Instabilities in a Parallel Channel Natural Circulation Boiling System
,”
Prog. Nucl. Energy
, 114, pp.
13
21
.10.1016/j.pnucene.2019.01.028
13.
Paul
,
D.
,
Singh
,
S.
, and
Mishra
,
S.
,
2019
, “
Interaction of Density Wave Oscillations and Flow Maldistribution for Two-Phase Flow Boiling Parallel Channels
,”
Int. J. Therm. Sci.
,
145
, p.
106026
.10.1016/j.ijthermalsci.2019.106026
14.
Kakaç
,
S.
,
Veziroğlu
,
T. N.
,
Özboya
,
N.
, and
Lee
,
S. S.
,
1977
, “
Transient Boiling Flow Instabilities in a Multi-Channel Upflow System
,”
Heat Mass Transfer
,
10
(
3
), pp.
175
188
.10.1007/BF01445795
15.
Ozawa
,
M.
,
Akagawa
,
K.
, and
Sakaguchi
,
T.
,
1989
, “
Flow Instabilities in Parallel-Channel Flow Systems of Gas-Liquid Two-Phase Mixtures
,”
Int. J. Multiphase Flow
,
15
(
4
), pp.
639
657
.10.1016/0301-9322(89)90058-X
16.
Chiapero
,
E. M.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2014
, “
Experimental Study of Pressure Drop Oscillations in Parallel Horizontal Channels
,”
Int. J. Heat Fluid Flow
,
50
, pp.
126
133
.10.1016/j.ijheatfluidflow.2014.06.004
17.
Chiapero
,
E. M.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2011
, “
Numerical Study of Pressure Drop Oscillations in Parallel Channels
,”
ASME
Paper No. AJK2011-10042.10.1115/AJK2011-10042
18.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
309
324
.10.1016/j.ijthermalsci.2010.08.006
19.
Zhang
,
T.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J. Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
,
2010
, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2347
2360
.10.1016/j.ijheatmasstransfer.2010.02.005
20.
Lee
,
S.
,
Devahdhanush
,
V. S.
, and
Mudawar
,
I.
,
2019
, “
Experimental and Analytical Investigation of Flow Loop Induced Instabilities in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
140
, pp.
303
330
.10.1016/j.ijheatmasstransfer.2019.05.077
21.
Xu
,
F.
, and
Wu
,
H.
,
2018
, “
Effect of Pin-Fins on the Onset of Flow Instability of Water in Silicon-Based Microgap
,”
Int. J. Therm. Sci.
,
130
, pp.
496
506
.10.1016/j.ijthermalsci.2018.05.020
22.
Ding
,
Y.
,
Jiang
,
W.
, and
Wang
,
H.
,
2012
, “
Hopf-Pitchfork Bifurcation and Periodic Phenomena in Nonlinear Financial System With Delay
,”
Chaos, Solitons Fractals
,
45
(
8
), pp.
1048
1057
.10.1016/j.chaos.2012.05.006
23.
Heinrich
,
M.
,
Dahms
,
T.
,
Flunkert
,
V.
,
Teitsworth
,
S. W.
, and
Schöll
,
E.
,
2010
, “
Symmetry-Breaking Transitions in Networks of Nonlinear Circuit Elements
,”
New J. Phys.
,
12
(
11
), p.
113030
.10.1088/1367-2630/12/11/113030
24.
Jiang
,
W.
, and
Niu
,
B.
,
2013
, “
On the Coexistence of Periodic or Quasi-Periodic Oscillations Near a Hopf-Pitchfork Bifurcation in NFDE
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
3
), pp.
464
477
.10.1016/j.cnsns.2012.08.004
25.
Rahman
,
M. E.
, and
Singh
,
S.
,
2018
, “
Non-Linear Stability Analysis of Pressure Drop Oscillations in a Heated Channel
,”
Chem. Eng. Sci.
,
192
, pp.
176
186
.10.1016/j.ces.2018.07.013
26.
Liu
,
H. T.
,
Koçak
,
H.
, and
Kakaç
,
S.
,
1995
, “
Dynamical Analysis of Pressure-Drop Type Oscillations With a Planar Model
,”
Int. J. Multiphase Flow
,
21
(
5
), pp.
851
859
.10.1016/0301-9322(95)00012-M
27.
Cao
,
L.
,
Kakaç
,
S.
,
Liu
,
H. T.
, and
Sarma
,
P. K.
,
2000
, “
The Effects of Thermal Non-Equilibrium and Inlet Temperature on Two-Phase Flow Pressure Drop Type Instabilities in an Upflow Boiling System
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
886
895
.10.1016/S1290-0729(00)01174-1
28.
Zhang
,
T.
,
Wen
,
J. T.
,
Peles
,
Y.
,
Catano
,
J.
,
Zhou
,
R.
, and
Jensen
,
M. K.
,
2011
, “
Two-Phase Refrigerant Flow Instability Analysis and Active Control in Transient Electronics Cooling Systems
,”
Int. J. Multiphase Flow
,
37
, pp.
84
97
.10.1016/j.ijmultiphaseflow.2010.07.003
29.
Rahman
,
M. E.
, and
Singh
,
S.
,
2019
, “
Flow Excursions and Pressure Drop Oscillations in Boiling Two-Phase Channel
,”
Int. J. Heat Mass Transfer
,
138
, pp.
647
658
.10.1016/j.ijheatmasstransfer.2019.04.025
30.
Liu
,
F.
,
Lv
,
J.
,
Zhang
,
B.
, and
Yang
,
Z.
,
2019
, “
Nonlinear Stability Analysis of Ledinegg Instability Under Constant External Driving Force
,”
Chem. Eng. Sci.
,
206
, pp.
432
445
.10.1016/j.ces.2019.05.035
31.
Baikin
,
M.
,
Taitel
,
Y.
, and
Barnea
,
D.
,
2010
, “
Flow Rate Maldistribution in Multi Heated Parallel Pipes
,”
ASME
Paper No. IHTC14-22650.10.1115/IHTC14-22650
32.
Kakaç
,
S.
,
Veziroělu
,
T. N.
,
Padki
,
M. M.
,
Fu
,
L. Q.
, and
Chen
,
X. J.
,
1990
, “
Investigation of Thermal Instabilities in a Forced Convection Upward Boiling System
,”
Exp. Therm. Fluid Sci.
,
3
(
2
), pp.
191
201
.10.1016/0894-1777(90)90087-N
33.
Van Oevelen
,
T.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Predicting Two-Phase Flow Distribution and Stability in Systems With Many Parallel Heated Channels
,”
Int. J. Heat Mass Transfer
,
107
, pp.
557
571
.10.1016/j.ijheatmasstransfer.2016.11.050
34.
Kuang
,
Y.
,
Wang
,
W.
,
Miao
,
J.
,
Yu
,
X.
, and
Zhuan
,
R.
,
2017
, “
Theoretical Analysis and Modeling of Flow Instability in a Mini-Channel Evaporator
,”
Int. J. Heat Mass Transfer
,
104
, pp.
149
162
.10.1016/j.ijheatmasstransfer.2016.08.042
35.
Kakaç
,
S.
, and
Cao
,
L.
,
2009
, “
Analysis of Convective Two-Phase Flow Instabilities in Vertical and Horizontal in-Tube Boiling Systems
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3984
3993
.10.1016/j.ijheatmasstransfer.2009.03.025
36.
Ozawa
,
M.
,
Nakanishi
,
S.
,
Ishigai
,
S.
,
Mizuta
,
Y.
, and
Tarui
,
H.
,
1979
, “
Flow Instabilities in Boiling Channels Part 1 Pressure Drop Oscillation
,”
Bull. JSME
,
22
(
170
), pp.
1113
118
.10.1299/jsme1958.22.1113
37.
Mawasha
,
P. R.
, and
Gross
,
R. J.
,
2001
, “
Periodic Oscillations in a Horizontal Single Boiling Channel With Thermal Wall Capacity
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
643
649
.10.1016/S0142-727X(01)00115-1
38.
Yang
,
Z.
,
Shan
,
Y.
,
Zhang
,
B.
, and
Liu
,
Y.
,
2018
, “
Hydrodynamic Characteristics of Cyclohexane in a Horizontal Mini-Tube at Trans- and Supercritical Pressures
,”
Appl. Therm. Eng.
,
129
, pp.
62
69
.10.1016/j.applthermaleng.2017.10.009
39.
Yang
,
J.
,
2013
, “
Stability Analysis for Pitchfork Bifurcations of Solitary Waves in Generalized Nonlinear Schrödinger Equations
,”
Phys. D
,
244
(
1
), pp.
50
67
.10.1016/j.physd.2012.10.006
40.
Dokhane
,
A.
,
Hennig
,
D.
, and
Chawla
,
R.
,
2005
, “
Rizwan-Uddin, Semi-Analytical Bifurcation Analysis of Two-Phase Flow in a Heated Channel
,”
Int. J. Bifurcation Chaos
,
15
, pp.
2395
2409
.10.1142/S0218127405013381
41.
Singh
,
M. P.
,
Paul
,
S.
, and
Singh
,
S.
,
2019
, “
Development of a Novel Nodalized Reduced Order Model for Stability Analysis of Supercritical Fluid in a Heated Channel
,”
Int. J. Therm. Sci.
,
137
, pp.
650
664
.10.1016/j.ijthermalsci.2018.12.005
42.
Singh
,
M. P.
, and
Singh
,
S.
,
2019
, “
Non-Linear Stability Analysis of Supercritical Carbon Dioxide Flow in Inclined Heated Channel
,”
Prog. Nucl. Energy
,
117
, p.
103048
.10.1016/j.pnucene.2019.103048
43.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
,
Meijer
,
H. G. E.
, and
Sautois
,
B.
,
2008
, “
New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems
,”
Math. Comput. Model. Dyn. Syst.
,
14
(
2
), pp.
147
175
.10.1080/13873950701742754
44.
Wiggins
,
S.
,
2003
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
,
New York
.
45.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory
, 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.