Abstract

A novel hybrid superhydrophobic and superhydrophilic copper surface was fabricated using a lift-off process to integrate the benefits of dropwise and filmwise condensation together. The superhydrophilic surface was comprised of microflower like CuO and nanorod Cu(OH)2 with a diameter in the range of 200–600 nm and the superhydrophobic surface was fabricated by chemical modification with Cytop on the hierarchically structured surface of CuO/Cu(OH)2. Wetting condition effect on the hybrid surface was investigated experimentally with a high-speed camera attached to a microscope and an environmental scanning electrical microscope (ESEM). Out-of-plane droplet jumping motion on superhydrophilic region and gravity effect on the droplet motion were examined. Experiment results showed that effective heat transfer coefficients of hybrid superhydrophobic and superhydrophilic surfaces were improved as compared with those of pure superhydrophobic surface. Comparison results between two hybrid surfaces with 2 and 4 mm pattern pitches indicated that the distance reduction between two neighboring superhydrophilic areas can enhance the condensation performance because short distance can promote the microcondensate coalescence and droplets removal.

References

1.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.10.1557/mrs.2013.103
2.
Hou
,
Y. M.
,
Yu
,
M.
,
Chen
,
X. M.
,
Wang
,
Z. K.
, and
Yao
,
S. H.
,
2015
, “
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
,”
ACS Nano
,
9
(
1
), pp.
71
81
.10.1021/nn505716b
3.
Rose
,
J. W.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng.
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
4.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2006
, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Trans.
,
49
(
3–4
), pp.
649
657
.10.1016/j.ijheatmasstransfer.2005.08.016
5.
Enright
,
R.
,
Miljkovic
,
N.
,
Dou
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer
,
135
, p.
091304
.10.1115/1.4024424
6.
Ma
,
X. H.
,
Chen
,
J. B.
,
Xu
,
D. Q.
,
Lin
,
J. F.
,
Ren
,
C. S.
, and
Long
,
Z. H.
,
2002
, “
Influence of Processing Conditions of Polymer Film on Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3405
3411
.10.1016/S0017-9310(02)00059-5
7.
Chen
,
C. H.
,
Cai
,
Q. J.
,
Tsai
,
C.
,
Chen
,
C. L.
,
Xiong
,
G. Y.
,
Yu
,
Y.
, and
Ren
,
Z. F.
,
2007
, “
Dropwise Condensation on Superhydrophobic Surfaces With Two-Tier Roughness
,”
Appl. Phys. Lett.
,
90
, p.
173108
.10.1063/1.2731434
8.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.10.1021/nl303835d
9.
Torresin
,
D.
,
Tiwari
,
M. K.
,
Col
,
D. D.
, and
Poulikakos
,
D.
,
2013
, “
Flow Condensation on Copper-Based Nanotextured Superhydrophobic Surfaces
,”
Langmuir
,
29
(
2
), pp.
840
848
.10.1021/la304389s
10.
Carey
,
V. P.
,
2007
,
Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
, 2nd ed.,
Taylor & Francis
,
London
.
11.
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Yang
,
W.
, and
Deng
,
T.
,
2009
, “
Spatial Control in the Heterogeneous Nucleation of Water
,”
Appl. Phys. Lett.
,
95
, p.
094101
.10.1063/1.3200951
12.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase Change
, 2nd ed.,
Taylor and Francis
,
New York
.
13.
Yamauchi
,
A.
,
Kumagai
,
S.
, and
Takeyama
,
T.
,
1986
, “
Condensation Heat Transfer on Various Dropwise-Filmwise Coexisting Surfaces
,”
Heat Trans.: Jpn. Res.
,
15
, pp.
50
64
.
14.
Daniel
,
S.
,
Chaudhury
,
M. K.
, and
Chen
,
J. C.
,
2001
, “
Fast Drop Movements Resulting From the Phase Change on a Gradient Surface
,”
Science
,
291
(
5504
), pp.
633
636
.10.1126/science.291.5504.633
15.
Zhu
,
X.
,
Wang
,
H.
,
Liao
,
Q.
,
Ding
,
Y. D.
, and
Gu
,
Y. B.
,
2009
, “
Experiments and Analysis on Self-Motion Behaviors of Liquid Droplets on Gradient Surfaces
,”
Exp. Therm. Fluid. Sci.
,
33
(
6
), pp.
947
954
.10.1016/j.expthermflusci.2009.02.009
16.
Peng
,
B. L.
,
Ma
,
X. H.
,
Lan
,
Z.
,
Xu
,
W.
, and
Wen
,
R. F.
,
2014
, “
Analysis of Condensation Heat Transfer Enhancement With Dropwise-Filmwise Hybrid Surface: Droplet Sizes Effect
,”
Int. J. Heat Mass Trans.
,
77
, pp.
785
794
.10.1016/j.ijheatmasstransfer.2014.05.052
17.
Chaudhary
,
A.
, and
Barshilia
,
H. C.
,
2011
, “
Nanometric Multiscale Rough CuO/CuOH2 Superhydrophobic Surface Prepared by a Facile One Step Solution-Immersion Process: Transition to Superhydrophilicity With Oxygen Plasma Treatment
,”
J. Phys. Chem.
,
115
(
37
), pp.
18213
18220
.10.1021/jp204439c
18.
Chen
,
X. H.
,
Kong
,
L. H.
,
Dong
,
D.
,
Yang
,
G. B.
,
Yu
,
L. G.
,
Chen
,
J. M.
, and
Zhang
,
P. Y.
,
2009
, “
Fabrication of Functionalized Copper Compound Hierarchical Structure With Bionic Superhydrophobic Properties
,”
J. Phys. Chem.
,
113
(
14
), pp.
5396
5401
.10.1021/jp809616d
19.
Feng
,
J.
,
Qin
,
Z. Q.
, and
Yao
,
S. H.
,
2012
, “
Factors Affecting the Spontaneous Motion of Condensate Drops on Superhydrophobic Copper Surfaces
,”
Langmuir
,
28
(
14
), pp.
6067
6075
.10.1021/la300609f
20.
Almeida
,
R.
, and
Kwon
,
J. W.
,
2013
, “
Virtual Walls With Oil Repellent Surfaces for Low Surface Tension Liquids
,”
Langmuir
,
29
(
4
), pp.
994
998
.10.1021/la3040038
21.
Cheng
,
J. T.
,
Vandadi
,
A.
, and
Chen
,
C. L.
,
2012
, “
Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
101
(
13
), p.
131909
.10.1063/1.4756800
22.
Ma
,
X. H.
,
Wang
,
L.
,
Chen
,
J. B.
,
Zhu
,
X. B.
, and
An
,
J. M.
,
2003
, “
Condensation Heat Transfer of Steam on Vertical Dropwise and Filmwise Coexisting Surfaces With a Thick Organic Film Promoting Dropwise Mode
,”
Exp. Heat Trans.
,
16
(
4
), pp.
239
253
.10.1080/08916150390223065
23.
Kedzierski
,
M. A.
, and
Worthington
,
J. L.
,
1993
, “
Design and Machining of Copper Specimens With Micro Holes for Accurate Heat Transfer Measurements
,”
Exp. Heat. Trans.
,
6
(
4
), pp.
329
344
.10.1080/08916159308946463
24.
Boreyko
,
J. B.
, and
Chen
,
C. H.
,
2009
, “
Self-Propelled Dropwise Condensation on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
, p.
184501
.10.1103/PhysRevLett.103.184501
25.
Ma
,
X. H.
,
Wang
,
S. F.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Bai
,
T.
, and
Ma
,
H. B.
,
2011
, “
Pulsating and Bouncing Off of Dropwise Condensate on Superhydrophobic Surface
,”
ASME
Paper No. IMECE2011-65795.10.1115/IMECE2011-65795
26.
Thoroddsen
,
S. T.
, and
Takehara
,
K.
,
2000
, “
The Coalescence Cascade of a Drop
,”
Phys. Fluids
,
12
(
6
), pp.
1265
1267
.10.1063/1.870380
27.
Boreyko
,
J. B.
, and
Chen
,
C. H.
,
2013
, “
Vapor Chambers With Jumping-Drop Liquid Return From Superhydrophobic Condensers
,”
Int. J. Heat Mass Trans.
,
61
, pp.
409
418
.10.1016/j.ijheatmasstransfer.2013.01.077
You do not currently have access to this content.