Phase-change materials (PCM) with low supercooling degree (SD) are important in cold thermal energy storage (CTES) applications. The SD of nanosuspension PCM usually decreases with increasing nanoparticle concentration. However, the performance variation of nanosuspension PCM at high concentrations has been rarely studied, though it is important because nanoparticles tend to aggregate. In this paper, the SD and dispersion stability of nanosuspensions of TiO2, zirconium phosphate (ZrP), and TiO2 coupled with zirconium phosphate (TiO2-ZrP) were investigated at nanoparticle concentrations up to 5.0 wt %. Results show that the SD of TiO2 suspension did not remarkably varied with mass concentrations above 2.0 wt %. In contrast, the SD of TiO2-ZrP and ZrP were low and continuously decreased with increasing mass concentration of nanoparticles. The dispersion stability of TiO2-ZrP suspension improved compared with that of TiO2 suspension. Hence, TiO2-ZrP suspension provided more nucleation sites than TiO2 suspension to induce heterogeneous in water.

References

1.
Cheralathan
,
M.
,
Velraj
,
R.
, and
Renganarayanan
,
S.
,
2007
, “
Performance Analysis on Industrial Refrigeration System Integrated With Encapsulated PCM-Based Cool Thermal Energy Storage System
,”
Int. J. Energy Res.
,
31
(14), pp.
1398
1413
.
2.
Stritih
,
U.
, and
Butala
,
V.
,
2007
, “
Energy Saving in Building With PCM Cold Storage
,”
Int. J. Energy Res.
,
31
(15), pp.
1532
1544
.
3.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2012
, “
A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
134
(
9
), p.
092301
.
4.
Oró
,
E.
,
de Gracia
,
A.
,
Castell
,
A.
,
Farid
,
M. M.
, and
Cabeza
,
L. F.
,
2012
, “
Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications
,”
Appl. Energy
,
99
, pp.
513
533
.
5.
Baker
,
K. J.
, and
Rylatt
,
R. M.
,
2008
, “
Improving the Prediction of UK Domestic Energy-Demand Using Annual Consumption-Data
,”
Appl. Energy
,
85
(
6
), pp.
475
482
.
6.
Chen
,
S. L.
,
Wang
,
P. P.
, and
Lee
,
T. S.
,
1998
, “
An Experimental Investigation of Nucleation Probability of Supercooled Water Inside Cylindrical Capsules
,”
Exp. Therm. Fluid. Sci.
,
18
(
4
), pp.
299
306
.
7.
Hasadi
,
Y. M. F. E.
, and
Khodadadi
,
J. M.
,
2013
, “
Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052901
.
8.
Wu
,
S.
,
Zhu
,
D.
,
Li
,
X.
,
Li
,
H.
, and
Lei
,
J.
,
2009
, “
Thermal Energy Storage Behavior of Al2O3–H2O Nanofluids
,”
Thermochim. Acta
,
483
(
1–2
), pp.
73
77
.
9.
Mo
,
S. P.
,
Chen
,
Y.
,
Jia
,
L. S.
, and
Luo
,
X. L.
,
2012
, “
Investigation on Crystallization of TiO2-Water Nanofluids and Deionized Water
,”
Appl. Energy
,
93
, pp.
65
70
.
10.
Kumaresan
,
V.
,
Chandrasekaran
,
P.
,
Maitreyee
,
N.
,
Maini
,
A. K.
, and
Velraj
,
R.
,
2013
, “
Role of PCM Based Nanofluids for Energy Efficient Cool Thermal Storage System
,”
Int. J. Refrig.
,
36
(
6
), pp.
1641
1647
.
11.
Mo
,
S. P.
,
Chen
,
Y.
,
Jia
,
L. S.
, and
Luo
,
X. L.
,
2013
, “
Reduction of Supercooling of Water by TiO2 Nanoparticles as Observed Using Differential Scanning Calorimeter
,”
J. Exp. Nanosci.
,
8
(
4
), pp.
533
539
.
12.
Chandrasekaran
,
P.
,
Cheralathan
,
M.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2014
, “
Enhanced Heat Transfer Characteristics of Water Based Copper Oxide Nanofluid PCM (Phase Change Material) in a Spherical Capsule During Solidification for Energy Efficient Cool Thermal Storage System
,”
Energy
,
72
, pp.
636
642
.
13.
Wang
,
X. J.
,
Li
,
X. F.
,
Xu
,
Y. H.
, and
Zhu
,
D. S.
,
2014
, “
Thermal Energy Storage Characteristics of Cu-H2O Nanofluids
,”
Energy
,
78
, pp.
212
217
.
14.
Chandrasekaran
,
P.
,
Cheralathan
,
M.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2014
, “
Solidification Behavior of Water Based Nanofluid Phase Change Material With a Nucleating Agent for Cool Thermal Storage System
,”
Int. J. Refrig.
,
41
, pp.
157
163
.
15.
Li
,
X.
,
Chen
,
Y.
,
Cheng
,
Z. D.
,
Jia
,
L. S.
,
Mo
,
S. P.
, and
Liu
,
Z. W.
,
2014
, “
Ultrahigh Specific Surface Area of Graphene for Eliminating Subcooling of Water
,”
Appl. Energy
,
130
, pp.
824
829
.
16.
Liu
,
Y.
,
Liu
,
Y.
,
Hu
,
P.
,
Li
,
X.
,
Gao
,
R.
,
Peng
,
Q.
, and
Wei
,
L.
,
2015
, “
The Effects of Graphene Oxide Nanosheets and Ultrasonic Oscillation on the Supercooling and Nucleation Behavior of Nanofluids PCMs
,”
Microfluid Nanofluid
,
18
(
1
), pp.
81
89
.
17.
Liu
,
Y. D.
,
Li
,
X.
,
Hu
,
P. F.
, and
Hu
,
G. H.
,
2015
, “
Study on the Supercooling Degree and Nucleation Behavior of Water-Based Graphene Oxide Nanofluids PCM
,”
Int. J. Refrig.
,
50
, pp.
80
86
.
18.
Mo
,
S. P.
,
Chen
,
Y.
,
Cheng
,
Z. D.
,
Jia
,
L. S.
,
Luo
,
X. L.
,
Shao
,
X. F.
,
Yuan
,
X.
, and
Lin
,
G.
,
2015
, “
Effects of Nanoparticles and Sample Containers on Crystallization Supercooling Degree of Nanofluids
,”
Thermochim. Acta
,
605
, pp.
1
7
.
19.
Altohamy
,
A. A.
,
AbdRabbo
,
M. F.
, and
Sakr
,
R.
,
2015
, “
Effect of Water Based Al2O3 Nanoparticle PCM on Cool Storage Performance
,”
Appl. Therm. Eng.
,
84
, pp.
331
338
.
20.
Fan
,
L. W.
,
Yao
,
X. L.
,
Wang
,
X.
,
Wu
,
Y. Y.
,
Liu
,
X. L.
,
Xu
,
X.
, and
Yu
,
Z. T.
,
2015
, “
Non-Isothermal Crystallization of Aqueous Nanofluids With High Aspect-Ratio Carbon Nano-Additives for Cold Thermal Energy Storage
,”
Appl. Energy
,
138
, pp.
193
201
.
21.
Sathishkumar
,
A.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2016
, “
Solidification Characteristics of Water Based Graphene Nanofluid PCM in a Spherical Capsule for Cool Thermal Energy Storage Applications
,”
Int. J. Refrig.
,
66
, pp.
73
83
.
22.
Jia
,
L.
,
Peng
,
L.
,
Chen
,
Y.
,
Mo
,
S.
, and
Li
,
X.
,
2014
, “
Improving the Supercooling Degree of Titanium Dioxide Nanofluids With Sodium Dodecylsulfate
,”
Appl. Energy
,
124
(
7
), pp.
248
255
.
23.
Liu
,
Z.
,
Yin
,
T.
,
Chen
,
Y.
,
Cheng
,
Z.
,
Mo
,
S.
, and
Jia
,
L.
,
2015
, “
Improving the Stability of TiO2 Aqueous Suspensions by Coupling TiO2 Nanoparticles on ZrP Nanoplatelets
,”
Energy Procedia
,
75
, pp.
2199
2204
.
24.
Shuai
,
M.
,
Mejia
,
A. F.
,
Chang
,
Y. W.
, and
Cheng
,
Z.
,
2013
, “
Hydrothermal Synthesis of Layered a-Zirconium Phosphate Disks: Control of Aspect Ratio and Polydispersity for Nano-Architecture
,”
Cyst. Eng. Commun.
,
15
(
10
), pp.
1970
1977
.
25.
Mejia
,
A. F.
,
Chang
,
Y. W.
,
Ratna
,
N.
,
Shuai
,
M.
,
Mannan
,
M. S.
, and
Cheng
,
Z. D.
,
2012
, “
Aspect Ratio and Polydispersity Dependence of Isotropic-Nematic Transition in Discotic Suspensions
,”
Phys. Rev. E
,
85
, p.
061708
.
26.
Kim
,
H. N.
,
Keller
,
S. W.
, and
Mallouk
,
T. E.
,
1997
, “
Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions
,”
Chem. Mater.
,
9
(
6
), pp.
1414
1421
.
27.
Wiśniewska
,
M.
,
2010
, “
Influences of Polyacrylic Acid Adsorption and Temperature on the Alumina Suspension Stability
,”
Powder Technol.
,
198
(
2
), pp.
258
266
.
28.
Zhang
,
X. J.
,
Wu
,
P.
,
Qiu
,
L. M.
,
Zhang
,
X. B.
, and
Tian
,
X. J.
,
2010
, “
Analysis of the Nucleation of Nanofluids in the Ice Formation Process
,”
Energy Convers. Manage.
,
51
(
1
), pp.
130
134
.
29.
Okawa
,
S.
,
Satio
,
A.
, and
Minami
,
R.
,
2001
, “
The Solidification Phenomenon of the Supercooled Water Containing Solid Particles
,”
Int. J. Refrig.
,
24
(
1
), pp.
108
117
.
You do not currently have access to this content.