This work applies a projection-based model-reduction approach to make high-order quadrature (HOQ) computationally feasible for the discrete ordinates approximation of the radiative transfer equation (RTE) for purely absorbing applications. In contrast to traditional discrete ordinates variants, the proposed method provides easily evaluated error estimates associated with the angular discretization as well as an efficient approach for reducing this error to an arbitrary level. In particular, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model (ROM) constructed from this reduced basis. This strategy results in a much more accurate solution than might have been achieved using only the ordinate directions used to construct the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.

References

1.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.
2.
Rozza
,
G.
,
Huynh
,
D.
, and
Patera
,
A.
,
2008
, “
Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations
,”
Arch. Comput. Methods Eng.
,
15
(
3
), pp.
229
275
.
3.
Antoulas
,
A.
,
Sorensen
,
D.
, and
Gugercin
,
S.
,
2001
, “
A Survey of Model Reduction Methods for Large-Scale Systems
,”
Contemp. Math.
,
280
, pp.
193
220
.
4.
Gaonkar
,
A. K.
, and
Kulkarni
,
S. S.
,
2015
, “
Application of Multilevel Scheme and Two Level Discretization for POD Based Model Order Reduction of Nonlinear Transient Heat Transfer Problems
,”
Comput. Mech.
,
55
(
1
), pp.
179
191
.
5.
Selimefendigil
,
F.
, and
Polifke
,
W.
,
2014
, “
Nonlinear, Proper-Orthogonal-Decomposition-Based Model of Forced Convection Heat Transfer in Pulsating Flow
,”
AIAA J.
,
52
(
1
), pp.
131
145
.
6.
Xu
,
C.
, and
Schuster
,
E.
,
2013
, “
Low-Dimensional Modeling of Linear Heat Transfer Systems Using Incremental the Proper Orthogonal Decomposition Method
,”
Asia-Pac. J. Chem. Eng.
,
8
(
4
), pp.
473
482
.
7.
Guha
,
P.
, and
un Nabi
,
M.
,
2012
, “
Optimal Control of a Nonlinear Induction Heating System Using a Proper Orthogonal Decomposition Based Reduced Order Model
,”
J. Process Control
,
22
(
9
), pp.
1681
1687
.
8.
Alonso
,
D.
,
Velazquez
,
A.
, and
Vega
,
J.
,
2009
, “
Robust Reduced Order Modeling of Heat Transfer in a Back Step Flow
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1149
1157
.
9.
Shenefelt
,
J.
,
Luck
,
R.
,
Taylor
,
R.
, and
Berry
,
J.
,
2002
, “
Solution to Inverse Heat Conduction Problems Employing Singular Value Decomposition and Model-Reduction
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
67
74
.
10.
Blanc
,
T.
,
Jones
,
M.
, and
Gorrell
,
S.
,
2016
, “
Reduced-Order Modeling of Conjugate Heat Transfer Processes
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051703
.
11.
Pinnau
,
R.
, and
Schulze
,
A.
,
2007
, “
Model Reduction Techniques for Frequency Averaging in Radiative Heat Transfer
,”
J. Comput. Phys.
,
226
(
1
), pp.
712
731
.
12.
Buchan
,
A.
,
Calloo
,
A.
,
Goffin
,
M.
,
Dargaville
,
S.
,
Fang
,
F.
,
Pain
,
C.
, and
Navon
,
I.
,
2015
, “
A POD Reduced Order Model for Resolving Angular Direction in Neutron/Photon Transport Problems
,”
J. Comput. Phys.
,
296
, pp.
138
157
.
13.
Tencer
,
J.
,
Carlberg
,
K.
,
Hogan
,
R.
, and
Larsen
,
M.
,
2016
, “
Reduced Order Modeling Applied to the Discrete Ordinates Method for Radiation Heat Transfer in Participating Media
,”
ASME
Paper No. HT2016-7010.
14.
Koch
,
R.
, and
Becker
,
R.
,
2004
, “
Evaluation of Quadrature Schemes for the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
423
435
.
15.
Lewis
,
E. E.
, and
Miller
,
W. F.
, Jr.
,
1993
, “
Computational Methods of Neutron Transport
,” American Nuclear Society, Inc., La Grange Park, IL.
16.
Longoni
,
G.
, and
Haghighat
,
A.
,
2001
, “
Development of New Quadrature Sets With the ‘Ordinate Splitting’ Technique
,” ANS International Meeting on Mathematical Methods for Nuclear Applications (
M&C
), Salt Lake City, UT, Sept., pp. 1–15.
17.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
18.
Buffa
,
A.
,
Maday
,
Y.
,
Patera
,
A. T.
,
Prudhomme
,
C.
, and
Turinici
,
G.
,
2012
, “
A Priori Convergence of the Greedy Algorithm for the Parametrized Reduced Basis Method
,”
ESAIM: Math. Modell. Numer. Anal.
,
46
(
3
), pp.
595
603
.
19.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2008
, “
Model Reduction for Large-Scale Systems With High-Dimensional Parametric Input Space
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
3270
3288
.
20.
LeGresley
,
P. A.
,
2006
, “
Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods
,”
Ph.D. thesis
, Stanford University, Stanford, CA.
21.
Carlberg
,
K.
,
Bou-Mosleh
,
C.
, and
Farhat
,
C.
,
2011
, “
Efficient Non-Linear Model Reduction Via a Least-Squares Petrov–Galerkin Projection and Compressive Tensor Approximations
,”
Int. J. Numer. Methods Eng.
,
86
(
2
), pp.
155
181
.
22.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.
23.
Carlberg
,
K.
,
Barone
,
M.
, and
Antil
,
H.
,
2017
, “
Galerkin V. Least-Squares Petrov–Galerkin Projection in Nonlinear Model Reduction
,”
J. Comput. Phys.
,
330
, pp.
693
734
.
24.
Grepl
,
M.
,
2005
, “
Reduced-Basis Approximation and a Posteriori Error Estimation for Parabolic Partial Differential Equations
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
25.
Grepl
,
M.
, and
Patera
,
A.
,
2005
, “
A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations
,”
ESAIM: Math. Modell. Numer. Anal.
,
39
(
1
), pp.
157
181
.
26.
Veroy
,
K.
,
Prud’homme
,
C.
,
Rovas
,
D.
, and
Patera
,
A.
,
2003
, “
A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations
,”
AIAA
Paper No. 2003-3847.
27.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2008
, “
Parametric Reduced-Order Models for Probabilistic Analysis of Unsteady Aerodynamic Applications
,”
AIAA J.
,
46
(
10
), pp.
2520
2529
.
28.
Hinze
,
M.
, and
Kunkel
,
M.
,
2012
, “
Residual Based Sampling in POD Model Order Reduction of Drift-Diffusion Equations in Parametrized Electrical Networks
,”
Z. Angew. Math. Mech.
,
92
(
2
), pp.
91
104
.
29.
Wu
,
Y.
, and
Hetmaniuk
,
U.
,
2015
, “
Adaptive Training of Local Reduced Bases for Unsteady Incompressible Navier–Stokes Flows
,”
Int. J. Numer. Methods Eng.
,
103
(
3
), pp.
183
204
.
30.
Drohmann
,
M.
, and
Carlberg
,
K.
,
2015
, “
The ROMES Method for Statistical Modeling of Reduced-Order-Model Error
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
116
145
.
31.
Tencer
,
J.
,
2015
, “
A Comparison of Angular Discretization Techniques for the Radiative Transport Equation
,”
ASME
Paper No. IMECE2015-50417.
32.
Coelho
,
P.
,
2002
, “
The Role of Ray Effects and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
231
238
.
You do not currently have access to this content.