A key subject of interest for technologies that involve flows of fluids at the supercritical thermodynamic state is the development of prediction methods that capture the fluid dynamics and convection heat transfer at this state. Due to the elevated temperatures and pressures associated with certain working fluids at this thermodynamic state, surrogate fluids are often used as substitutes for performing experiments during the design stages of prototype development. The success of this approach depends on the development of similarity criteria or fluid-to-fluid models. Similarity criteria for mixed-convection heat transfer in supercritical fluids are proposed based on a set of nondimensional dynamic similarity parameters and state-space parameters developed through our current understanding of the physical mechanisms that affect heat transfer in fluids at this state. The proposed similarity criteria are successfully validated using data from ducted flows of supercritical fluids with configurations having upstream, downstream, or wall-normal-oriented gravitational acceleration.

References

1.
De Rosa
,
M.
,
Guetta
,
G.
,
Ambrosini
,
W.
,
Forgione
,
N.
,
He
,
S.
, and
Jackson
,
J. D.
,
2011
, “
Lessons Learned From the Application of CFD Models in the Prediction of Heat Transfer to Fluids at Supercritical Pressure
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors
(
ISSCWR-5
), Vancouver, BC, Canada, Mar. 13–16, Paper No. P060.https://www.researchgate.net/profile/Mattia_De_Rosa/publication/258226274_Lessons_learned_from_the_application_of_CFD_models_in_the_prediction_of_heat_transfer_to_fluids_at_supercritical_pressure/links/53ff2d400cf21edafd15becd/Lessons-learned-from-the-application-of-CFD-models-in-the-prediction-of-heat-transfer-to-fluids-at-supercritical-pressure.pdf
2.
Pioro
,
I. L.
, and
Duffy
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.
3.
Ambrosini
,
W.
,
2011
, “
Discussion of Similarity Principles for Fluid-to-Fluid Scaling of Heat Transfer Behaviour at Supercritical Pressures
,”
Nucl. Eng. Des.
,
241
(
12
), pp.
5149
5173
.
4.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffy
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing Inside Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.
5.
Reinink
,
S.
, and
Yaras
,
M. I.
,
2015
, “
Study of Coherent Structures of Turbulence With Large Wall-Normal Gradients in Thermophysical Properties Using Direct Numerical Simulation
,”
Phys. Fluids
,
27
(
6
), p.
065113
.
6.
Dave
,
N.
,
Azih
,
C.
, and
Yaras
,
M. I.
,
2013
, “
A DNS Study on the Effects of Convex Streamwise Curvature on Coherent Structures in a Temporally-Developing Turbulent Boundary Layer With Supercritical Water
,”
Int. J. Heat Fluid Flow
,
44
, pp.
635
643
.
7.
Azih
,
C.
,
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2012
, “
Direct Numerical Simulation of Convective Heat Transfer in a Zero-Pressure-Gradient Boundary-Layer With Supercritical Water
,”
J. Therm. Sci.
,
21
(
1
), pp.
49
59
.
8.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
McEligot
,
D. M.
,
2008
, “
Direct Numerical Simulation of Heated CO2 Flows at Supercritical Pressure in a Vertical Annulus at Re = 8900
,”
Phys. Fluids
,
20
(
5
), p.
055108
.
9.
Jackson
,
J. D.
,
2011
, “
A Model of Developing Mixed Convection Heat Transfer in Vertical Tubes to Fluids at Supercritical Pressure
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors
(
ISSCWR-5
), Vancouver, BC, Canada, Mar. 13–16, Paper No. P104.
10.
Metaias
,
B.
, and
Eckert
,
E. R. G.
,
1964
, “
Forced, Mixed and Free Convection Regimes
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
295
296
.
11.
Cheng
,
X.
,
Liu
,
X. J.
, and
Gu
,
H. Y.
,
2011
, ““
Fluid-to-Fluid” Scaling of Heat Transfer in Circular Tubes Cooled With Supercritical Fluids
,”
Nucl. Eng. Des.
,
241
(
2
), pp.
498
508
.
12.
Zahlan
,
H.
,
Groeneveld
,
D. C.
, and
Tavoularis
,
S.
,
2014
, “
Fluid-to-Fluid Scaling for Convective Heat Transfer in Tubes at Supercritical and High Subcritical Pressures
,”
Int. J. Heat Mass Transfer
,
73
, pp.
274
283
.
13.
McEligot
,
D. M.
, and
Jackson
,
J. D.
,
2004
, ““
Deterioration” Criteria for Convective Heat Transfer in Gas Flow Through Non-Circular Ducts
,”
Nucl. Eng. Des.
,
232
(
3
), pp.
327
333
.
14.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Influences of Buoyancy on Heat Transfer to Fluids in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles
, Vol.
2
,
Hemisphere
,
New York
, pp.
613
640
.
15.
Zuber
,
N.
,
1966
, “
An Analysis of Thermally Induced Flow Oscillations in the Near-Critical and Super-Critical Thermodynamic Region
,” Research and Development Center, General Electric Company, Schenectady, NY, Technical Report No.
NASACR-80609
.https://ntrs.nasa.gov/search.jsp?R=19670004205
16.
Chatoorgoon
,
V.
,
2008
, “
Supercritical Flow Stability in Horizontal Channels
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
1940
1946
.
17.
Chatoorgoon
,
V.
,
2013
, “
Non-Dimensional Parameters for Static Instability in Supercritical Heated Channels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
145
154
.
18.
Ambrosini
,
W.
,
2009
, “
Discussion on the Stability of Heated Channels With Different Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
239
(12), pp.
2952
2963
.
19.
Ambrosini
,
W.
,
2011
, “
Assessment of Flow Stability Boundaries in a Heated Channel With Different Fluids at Supercritical Pressure
,”
Ann. Nucl. Energy
,
38
(
2
), pp.
615
627
.
20.
Winterton
,
R. H. S.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.
21.
Bogachev
,
V. A.
,
Yeroshenko
,
V. M.
, and
Yaskin
,
L. A.
,
1984
, “
Measurements of Mixed Convection Heat Transfer to Upflow of Supercritical Helium in a Vertical Tube
,”
Cryogenics
,
24
(
5
), pp.
266
270
.
22.
Bishop
,
A. A.
,
Sandberg
,
L. O.
, and
Tong
,
L. S.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,”
Joint Meeting of the American Institute of Chemical Engineers and the British Institution of Chemical Engineers
, London, Technical Report No.
WCAP-5449
.https://www.osti.gov/scitech/biblio/4595384
23.
Pucciarelli
,
A.
, and
Ambrosini
,
W.
,
2016
, “
Fluid-to-Fluid Scaling of Heat Transfer Phenomena With Supercritical Pressure Fluids: Results From RANS Analyses
,”
Ann. Nucl. Energy
,
92
, pp.
21
35
.
24.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction Roughened Pipes
,”
Proc. R. Soc. A
,
161
(906), pp. 367–381.
25.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2005
, “
Thermophysical Properties of Fluid Systems
,”
NIST Chemistry WebBook
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds., NIST Standard Reference Database Number 69,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
26.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
27.
Ackerman
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
498
.
28.
Krau
,
C. I.
,
Kuhn
,
D.
, and
Schulenberg
,
T.
,
2008
, “
Heat Transfer Phenomena of Supercritical Fluids
,”
International Youth Nuclear Conference
(
IYNC
), Inkerlaken, Switzerland, Sept. 20–26, Paper No. 352.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/40/048/40048155.pdf
29.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressures
,”
Teplofiz Vys. Temp.
,
1
(2), pp. 237–244.
30.
Watts
,
M. J.
, and
Chou
,
C. T.
,
1982
, “
Mixed Convection Heat Transfer to Supercritical Pressure Water
,”
Seventh International Heat Transfer Conference
(
IHTC
), Munich, Germany, Sept. 6–10, pp. 495–500.http://www.ihtcdigitallibrary.com/conferences/18465542600d30cc,7fa8a99773c88f15,79410f2c68d72ccd.html
31.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.
32.
Yu
,
S.
,
Li
,
H.
,
Lei
,
X.
,
Feng
,
Y.
,
Zhang
,
Y.
,
He
,
H.
, and
Wang
,
T.
,
2013
, “
Experimental Investigation on Heat Transfer Characteristics of Supercritical Pressure Water in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
213
221
.
33.
Zhang
,
G.
,
Zhang
,
H.
,
Gu
,
H.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2012
, “
Experimental and Numerical Investigation of Turbulent Convective Heat Transfer Deterioration of Supercritical Water in Vertical Tube
,”
Nucl. Eng. Des.
,
248
, pp.
226
237
.
34.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.
35.
Bourke
,
P. J.
,
Pulling
,
D. J.
,
Gill
,
L. E.
, and
Denton
,
W. H.
,
1970
, “
Forced Convective Heat Transfer to Turbulent CO2 in the Supercritical Region
,”
Int. J. Heat Mass Transfer
,
13
(
8
), pp.
1339
1348
.
36.
Duffey
,
R. D.
, and
Pioro
,
I. L.
,
2005
, “
Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
913
924
.
37.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S. J.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.
38.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Zhao
,
C. R.
, and
Shi
,
R. F.
,
2008
, “
Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1628
1637
.
39.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.
40.
Li
,
Z. H.
,
Jiang
,
P. X.
,
Zhao
,
C. R.
, and
Zhang
,
Y.
,
2010
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1162
1171
.
41.
Petukhov
,
B. S.
,
Kurangnov
,
V. A.
, and
Akudinov
,
V. B.
,
1983
, “
Heat Transfer and Flow Resistance in the Turbulent Pipe Flow of a Fluid With Near-Critical State Parameters
,”
High Temp. Sci.
,
21
(1), pp.
92
100
.
42.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1968
, “
The Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,” Massachusetts Institute of Technology, Cambridge, MA, Report No.
DSR 70332-55
.http://hdl.handle.net/1721.1/61489
43.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.
44.
Brassington
,
D. J.
, and
Carins
,
D. N. H.
,
1977
, “
Measurements of Forced Convective Heat Transfer to Supercritical Helium
,”
Int. J. Heat Mass Transfer
,
20
(
3
), pp.
207
214
.
45.
Giarratano
,
P. J.
,
Arp
,
V. D.
, and
Smith
,
R. V.
,
1971
, “
Forced Convection Heat Transfer to Supercritical Helium
,”
Cryogenics
,
11
(
5
), pp.
385
393
.
46.
Kang
,
K. H.
, and
Chang
,
S. H.
,
2009
, “
Experimental Study on the Heat Transfer Characteristics During the Pressure Transients Under Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4946
4955
.
47.
Zhang
,
S.
,
Gu
,
H.
,
Cheng
,
X.
, and
Xiong
,
Z.
,
2014
, “
Experimental Study on Heat Transfer of Supercritical Freon Flowing Upward in a Circular Tube
,”
Nucl. Eng. Des.
,
280
, pp.
305
315
.
48.
Giarratano
,
P. J.
, and
Jones
,
M. C.
,
1975
, “
Deterioration of Heat Transfer to Supercritical Helium at 2.5 Atmospheres
,”
Int. J. Heat Mass Transfer
,
18
(5), pp.
649
653
.
49.
Hall
,
W. B.
,
Jackson
,
J. D.
, and
Watson
,
A.
,
1968
, “
A Review of Forced Convection Heat Transfer to Fluids at Supercritical Pressures
,”
Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids
, Bristol, UK, Mar. 27, Vol. 182, Paper No. 3I.
You do not currently have access to this content.